Contrary Compact: The Life and Death of the Chevrolet Corvair

THE CORVAIR’S FLAW

The Corvair’s tail-heavy, rear-engine layout had a number of effects on its performance, some good, some less so. With nearly 64% of the car’s static weight on the driving wheels, winter traction was excellent. The rear weight bias aided braking as well, although the early Corvair’s brakes still faded heavily in hard use. On the other side of the ledger, the Corvair was more sensitive to crosswinds than was a typical front-engine car. Also, in fast turns, the Corvair’s rear tires lost their grip first, sending the tail sliding toward the outside of the turn — a condition engineers describe as terminal oversteer.

1960 Chevrolet Corvair rear
The early Corvair’s rear suspension was a modified swing-axle design, carrying its rear wheel hubs on both diagonal semi-trailing arms and the axle half-shafts, which were connected to the transaxle with a single universal joint on each side. Because the trailing arms and swing axles pivoted on the same axis, however, the suspension was subject to the same extreme camber changes as a ‘pure’ swing-axle layout.

The Corvair’s oversteer was the product of both its weight distribution and its suspension design. With the engine behind the rear axle, the rear springs had to be quite stiff to support its weight. The rear coils of the early Corvair were more than twice as stiff as the rear springs of a contemporary full-size Chevrolet. As a result, the Corvair had very high rear roll stiffness, something that was exaggerated by the geometry of the rear suspension.

Body roll is in part a function of the distance between the center of gravity and the suspension’s roll center (the axis on which the car’s sprung mass rotates when lateral force is applied to it). Because of its swing axles, the Corvair’s rear suspension had a high static roll center, which effectively increased the rear roll stiffness even further. Roll stiffness reduces body lean in turns, but it also increases the slip angle of the outside wheel (the angle between the direction the tire is pointed and the direction it is actually rolling). Since the Corvair had much higher roll stiffness in the rear than in the front, the rear tires’ slip angles were higher than those of the fronts, resulting in oversteer.

Oversteer is not necessarily any more dangerous than understeer — either can put a car in the weeds. However, few American driver-education programs teach the techniques involved in correcting oversteer and many of an untrained driver’s knee-jerk responses will make the effect worse. For that reason, most automakers try to tune their cars for final understeer, which is easier for the average driver to manage.

The early Corvair’s real Achilles heel was not oversteer, but another side effect of the swing-axle rear suspension: jacking. In a hard turn, the halfshaft of the outside rear wheel would drop below the pivot point of its universal joint. As cornering forces increased, the halfshaft then acted as a lever, forcing the tail upward. As the tail rose, the outside rear wheel would “tuck under,” assuming an exaggerated positive camber angle that would weaken and eventually break the tire tread’s already-tenuous grip on the pavement.

The result of this progression was a sudden burst of non-linear oversteer. It was not always easy to predict at exactly what point the tail would break loose and catching it was not always easy. (This behavior was by no means exclusive to the Corvair. Most cars with swing-axle rear suspensions suffered it to one degree or another, the most notorious example being the Mercedes-Benz 300SL “gullwing” coupe. The early (1961–1962) Pontiac Tempest also behaved similarly for the same reasons.)

animated illustration of swing-axle jacking effect
This diagram illustrates the nature of the jacking effect. The actual degree of jacking depends on the specific geometry and roll stiffness of the rear suspension. The effect can be mitigated by body roll, which reduces the magnitude of the forces involved and transfers weight onto the outside wheel, thereby resisting the vertical component of those forces. However, early Corvairs had such high rear roll stiffness that there was little weight transfer and the geometry of the swing arms would basically allow the halfshaft to ‘lock’ against the U-joint and act as a lever. (Please note: the degree of motion in the above animation has been exaggerated for illustration purposes. This diagram does not reflect the actual geometry of the production Corvair suspension!)

Chevrolet engineers were well aware of these tendencies and took several measures to alleviate them. The semi-trailing arms caused some rear steering, changing the toe angles of the rear wheels to induce understeer in turns. The original design also specified a front anti-roll bar to increase front roll stiffness. The anti-roll bar wouldn’t have changed the rear suspension’s behavior, but by increasing the slip angles of the front wheels, it would have caused the front end to wash out well before the rear tires reached their limits of adhesion.

Unfortunately, the anti-roll bar became a casualty of the last-minute cost-cutting program. As a cheaper stopgap, Chevrolet specified unequal tire pressures: 15 psi (1.03 bars) in front, 26 psi (1.79 bars) in back. The lower pressures reduced the grip of the front tires, effectively promoting understeer. It was at best a half-measure and the lower pressures served to reduce the load capacity of the front tires by 40%, which meant that a full load of passengers and luggage would strain the load capacity of the 13-inch tires. In any event, few owners observed the recommended pressures and even Chevrolet dealers offered differing opinions about the best settings.

In normal driving, neither the oversteer nor the jacking was usually an issue. Many owners drove their Corvairs for years without noticing anything unusual about the handling. A sudden maneuver taken at too high a speed on an unfamiliar road, however, could provoke an unexpectedly severe response. Since many Corvair owners had never owned a swing-axle car before, the effect was not unlike a normally docile family dog suddenly going for its owner’s throat. Even knowledgeable drivers could be caught off-guard; John DeLorean later claimed that Chevrolet engineer Frank Winchell actually flipped a Corvair prototype at the GM proving grounds in Milford, Michigan.

Early (1960–1963) Corvairs were involved in a number of serious, occasionally fatal single-car accidents, including the crash that killed comedian Ernie Kovacs in January 1962. Some of those accidents struck very close to home. The Corvair was very popular as a personal car for GM employees and their families and at least two children of senior executives died in accidents involving Corvairs. According to DeLorean, the niece of Pontiac’s Semon “Bunkie” Knudsen was injured in a similar crash.

Some owners filed civil lawsuits against General Motors, charging that the Corvair was unsafe. By 1965, there were more than 100 such suits. GM strenuously denied any mechanical fault, blaming the accidents on driver error or road conditions, but Chevrolet, perhaps stung by the accusations, developed an optional handling package to rectify the problem, followed in 1964 by an extensive revamp of the standard suspension (see sidebar below). Nonetheless, the accusations and lawsuits would eventually do serious damage to the Corvair’s reputation.

SIDEBAR: Taking the Sting out of the Swing Axle

The aftermarket offered a variety of handling fixes for the Corvair, including anti-roll bars, decambering kits, and camber compensators. Chevrolet followed suited in the fall of 1961, introducing an optional heavy-duty suspension package, RPO 696. Priced at only $10.80, it restored the front anti-roll bar that had been eliminated from the original design and added limiter straps for the rear swing axle, stiffer shocks, and stiffer springs. The latter were actually shorter than the stock rear springs, which served to decamber the rear wheels, trading the stock Corvair’s slight positive camber (wheels bowed outward at the top) for a few degrees of static negative camber (wheels bowed slightly inward).

The optional suspension had several effects. First, it increased the roll stiffness of the front suspension, adding more understeer to balance the rear suspension’s inherent oversteer. (This also served to reduce the Corvair’s tendency to wander in crosswinds, a useful side effect.) Second, the limiter straps and decambered rear springs lowered the rear suspension’s static roll center. Although that actually served to increase rear roll stiffness, the new geometry reduced the jacking effect. The static negative camber and limiter straps also prevented the rear wheels from reaching the same extremes of positive camber as the standard suspension, discouraging tuck-under. Contemporary testers found that these change made the Corvair much more predictable in fast cornering; a Corvair with the H-D suspension still tended to oversteer, but the previous erratic behavior was largely tamed.

swing axle camber animated gif
In a swing-axle suspension, there is only one universal joint on each side of the differential. As a result, the wheel hub must always remain perpendicular to the axle half-shaft, resulting in substantial camber changes as the wheel moves from jounce to rebound. Radical camber changes can dramatically reduce traction; a tire has the most grip with a camber angle of zero (i.e., completely vertical). In 1962–1963, the Corvair’s optional H-D suspension included limiter straps to restrict the motion of the swing arms. (Please note that the degree of camber change has been exaggerated for illustration purposes. The diagram is NOT to scale and does NOT reflect the actual geometry of the production Corvair suspension.)

While the suspension kit improved handling, it had several negative consequences that may have discouraged Chevrolet from making the revisions standard equipment. First, heavy loads would further increase the negative camber of the rear wheels, enough to cause exaggerated and uneven tire wear. Second, the stiffer springs and limiter straps also produced a much knobbier ride, which Chevrolet feared not all customers would accept. As for the anti-roll bar, DeLorean insisted that it came down to cost.

(We should note that there was not universal agreement about the value of the anti-roll bar. John Fitch settled for decambering the rear wheels of his Corvair Sprint. Unless the customer requested otherwise, Fitch actually removed the anti-roll bar from cars so equipped, deeming it unnecessary. Period testers claimed that the Sprint handled as well as if not better than the factory H-D kit, although the Fitch modifications’ effects on tire wear were not recorded.)

1964 Chevrolet Corvair 110 engine © 2005 Stephen Foskett (CC BY-SA 3.0 Unported)
Along with a revised suspension, the 1964 Corvair got a bigger “Turbo-Air” engine: A stroke increase from 2.60 inches (66 mm) to 2.94 inches (74.6 mm), increasing displacement to 164 cu. in. (2,685 cc). The base engine now had 95 gross horsepower (71 kW), but many cars, including this one, had the optional 110 hp (82 kW) version. (Note that despite the “Turbo-Air” trade name, this engine is not turbocharged; the gross horsepower rating is printed on a decal on the air cleaner.) Both engines carried over into the second-generation Corvair in 1965. (Photo: “Chevrolet Corvair 164 Turbo engine” © 2005 Stephen Foskett; resized and used under a Creative Commons Attribution-ShareAlike 3.0 Unported license)

When Knudsen became general manager of Chevrolet in 1961, he lobbied for more extensive changes to the suspensions of all Corvairs. DeLorean later alleged that Knudsen had to threaten to resign before the Executive Committee would authorize the cost of redesigning the suspension; we have not been able to verify that claim in other sources.

In any case, the front anti-roll bar finally became standard across the line for the 1964 model year. At the same time, the rear coil springs were softened considerably and a transverse leaf spring was added to the rear suspension. The auxiliary spring, broadly similar to the “camber compensators” offered by the aftermarket, supported part of the weight of the rear end and resisted deflection of the swing axles, but was mounted in such a way that it would not resist body roll. Combined with the softer rear coils, the 1964 Corvair had greatly reduced rear roll stiffness, reducing both jacking and radical camber changes. It also had a much softer ride than the previous heavy-duty suspension. Many critics felt Chevrolet should have adopted the 1964 approach from the start.

The second-generation Corvair, introduced in 1965, had a completely different multilink rear suspension that mitigated most of these issues. The new suspension still had some jacking — a side effect of using the half-shafts as control arms — but a lower roll center and softer rear springs reduced its magnitude. The double-jointed half-shafts (with U-joints on both ends of the half-shafts) also provided a much longer effective swing-arm length, greatly reducing the original layout’s radical camber changes.

CORVAIR MK 2

In 1961, Ed Cole was promoted to group vice president of the car and truck group, ceding the management of Chevrolet to Bunkie Knudsen. Under Knudsen’s leadership, Chevrolet began work on the second-generation Corvair, which arrived for the 1965 model year.

The new Corvair, designed by Henry Haga’s Chevrolet 2 studio, under the supervision of Chevrolet chief stylist Ron Hill, was one of the prettiest cars to come out of GM in this era. The new Corvair retained some of the basic themes of the first-generation car, but was sleeker and more curvaceous, with new hardtop roof lines for both two- and four-door models.

1966 Chevrolet Corvair Corsa front 3q © 2009 Staffan Vilcans/Liftarn (CC BY-SA 2.0 Generic)
The second-generation Chevrolet Corvair is longer and wider than the first-generation car, 183.3 inches (4,656 mm) long and 69.7 inches (1,770 mm) wide. Although it doesn’t look it, the coupe is slightly taller and about 50 lb (23 kg) heavier than its predecessor. Aside from the new suspension, other useful additions for the second generation included bigger brakes (9.5-inch/241mm drums borrowed from the Chevelle) and five-lug hubs, which allowed the use of bigger wheels from other Chevrolets. (Photo: “Chevrolet Corvair” © 2009 Staffan Vilcans (Liftarn); used under a Creative Commons Attribution-ShareAlike 2.0 Generic license)

Under the skin, the swing axles and semi-trailing arms were gone, replaced by an entirely new three-link rear suspension. Developed by Frank Winchell and Zora Arkus-Duntov, the new layout was based on the rear suspension of the 1963 Corvette Sting Ray. The wheel hubs were now carried on long trailing arms with small lateral links to adjust toe-in. The half-shafts, now pivoted at both ends, acted as lower control arms while two lateral links acted as upper arms. Unlike the Sting Ray, the Corvair used rear coil springs. The 1964 Corvair’s additional transverse leaf spring was deleted as it was no longer necessary.

With the new suspension, the second-generation Corvair’s ride and handling impressed even British critics, who tended to regard the road manners of American cars with dismay. The new Corvair could still be made to oversteer (as could most front-engine domestic sedans of the era), but it had none of its predecessor’s eccentricities. The second-generation Corvair handled and stopped as well as many contemporary sports cars. With the optional 140 hp (104 kW) normally aspirated engine and four-speed gearbox, it could also go from 0-60 mph (97 km/h) in less than 12 seconds and reach a top speed of perhaps 105 mph (169 km/h), while returning better than 20 mpg (11.8 L/100 km). Few cars of the mid-sixties could offer all of those qualities simultaneously, particularly for a price under $3,000.

1966 Chevrolet Corvair Corsa © 2009 Staffan Vilcans/Liftarn (CC BY-SA 2.0 Generic)
The top-of-the-line Corvair Corsa, available only in coupe or convertible form, was distinguished from lesser Corvairs by the silver paint in the rear ‘cove’ and a unique dash. The Corsa came standard with the 140 hp (104 kW) four-carb engine; the turbocharged engine was optional. (Photo: “Chevrolet Corvair” © 2009 Staffan Vilcans (Liftarn); used under a Creative Commons Attribution-ShareAlike 2.0 Generic license)

HORSE WHIPPED

If the second-generation Corvair had arrived a year earlier, it probably would have been a great hit, but by the time it appeared in the fall of 1964, it faced a formidable new rival: the Ford Mustang.

Even before the new Corvair debuted, it had largely relinquished its economy-car role to the Chevy II. You could still buy a stripped Corvair 500 coupe, but people generally bought Corvairs because they were sporty, not because they were sensible. Most buyers who could afford it generally chose the Monza with the hotter normally aspirated engine. The new Mustang, therefore, was aimed directly at the fattest part of the Corvair’s market.

Second-generation Chevrolet Corvair four-door hardtop rear 3q © 2010 Aaron Severson
All second-generation Corvairs, whether two-door or four-door, were pillarless. Buyers preferred the hardtop coupe or the convertible. The four-door now accounted for less than a quarter of production and was dropped entirely after the 1967 model year.

72 Comments

Add a Comment
  1. Yeah, to all intents and purposes the prototype Chev Cadet became our beloved Holden 48/215 or sometimes referred to as the “FX”.

    1. Well, sort of. The 195-Y-15 prototype that became the basis of the Holden FX was a predecessor of the Cadet, built well before the war. It had a few general similarities to the Cadet (including unibody construction and a smaller version of the Stovebolt Six), but it was quite different in packaging and dimensions. (Notably, it did not have strut suspension.) It’s probably fairer to say the Cadet would have been a cousin of the Holden FX; they have a common ancestor, but they followed different paths. Also, the Holden was well along in its development when the Cadet was canceled, so it wasn’t shipped off, the way Ford sent its Light Car to become the French Ford Vedette.

  2. I’m a big Corvair fan, and own 5 Corvairs. 3 Early ‘verts, including a Spyder, and a ’66 Fitch Sprint and a ’62 Rampside.
    I read your piece top to bottom, and enjoyed being reminded of the facts. Thank you, Corvairwild

  3. I just want to thank you for your fantastic effort in documenting the inner workings of the car industry, always informative and always entertaining! In each article I learn things I even did not know that I wanted to learn… :)

    It is great to learn the “American” (as in U.S.A.) automotive history since I have only an European perspective – and I can not wait until You take a look at similar cases concerning the Japanese and Korean car manufacturers! ;-D

    Cheers, Niclas

    1. We have done a couple of Japanese cars — the Datsun 510 and 240/260/280-Z, the Lexus LS400, and the Lexus SC/Toyota Soarer — and there will be more in the future. (I’d love to tackle the Mazda RX-7 and Subaru SVX at some point, the Honda Civic CRX is likely, and there will most definitely be an NSX article.) The Korean automakers are probably not going to be popping up any time soon, but I certainly wouldn’t rule it out.

  4. The 55 nomad had a 265CID not a 262

    1. Whoops, that’s a typo. Fixed.

  5. In the article, you mention that early Corvairs had rear swing axle suspension. I think early VWs and Triumph Spitfire had a similar arrangement. Did any (other) cars of the late 1940s or 1950s have a more sophisticated independent rear suspension arrangement (Jaguar, Tucker or others)? Thanks

    1. That’s a good question. Some race cars adopted true double-wishbone suspensions, but I don’t know of any forties or fifties production cars that used that set-up, mainly for cost reasons. Jaguar’s independent rear suspension was developed contemporaneously with the Corvair, but it didn’t appear in production until the debut of the E-Type in 1961.

      The three major alternatives to swing axles in the late fifties and early sixties were the de Dion axle, “low-pivot” swing axles, and trailing arms. The de Dion, which was popular for racing, but used only sporadically on production cars, was not really an independent suspension; it mounted the differential on the frame or monocoque, so it didn’t contribute to unsprung weight, but connected the wheels with a sort of telescoping beam axle. It worked reasonably well on front-engine cars, providing low unsprung weight without radical camber changes, but the axle made it impractical for rear-engine designs.

      Mercedes adopted the low-pivot swing axle approach, which it called [i]Eingelenkpendelachse[/i]; VW came up with something similar in the late sixties. The low-pivot design, as the name implies, arranges the axle half-shafts so the geometric center of their arc of motion is a single point [i]below[/i] the differential, rather than having each axle pivot at the side of the diff. Doing that has two effects. First, it lowers the roll center, which reduces jacking. Second, it causes the swing axles to act as if they’re much longer than they actually are. By increasing the radius of the arc they transcribe, the change in wheel camber is only a few degrees, rather than 15 or more.

      A pure trailing arm suspension is in some ways the opposite of swing axles. The wheels are carried on an arm that hinges to the body ahead of the axle line. The trailing arm allows the wheel to move vertically, but not to change its camber relative to the angle of the body. (As the car leans, the wheel camber still changes, because the arm itself is attached to the body.) Trailing arms don’t induce oversteer, but they tend to produce massive roll understeer instead. With a rear-drive car, however, the axle half-shafts will still influence wheel location unless you have a universal joint on each end of each half-shaft.

      That’s essentially what Jaguar and Chevrolet did for the E-Type and Corvette suspensions (and the second-generation Corvair), although they also added additional lateral links to allow camber gain in turns. It worked much better than swing axles (even the low-pivot variety), but it was more expensive, which is why it was slow to catch on.

      Incidentally, if Chevy had built the Cadet as Earle MacPherson originally wanted, it would have had independent suspension via struts — like a modern Camry — in 1947. The only reason it didn’t happen was (unsurprisingly) cost.

  6. What a great piece of history. As a long time, if somewhat casual, fan of the Corvair Id like to say thanks for the well researched and written article.

  7. Lancia used semi trailing arms on the Aurelia when it was introduced in 1950. They switched to a DeDion set up in ’54.

  8. Great retrospective. However, you missed one serious design issue on Corvairs. The heater. On both early and late models, the direct heater (which uses air that has circulated past the heated engine and exhaust manifold) is dangerous enough that the largest Corvair aftermarket vendor sells a CO2 monitor/warning alarm. Clearly an engineering concession to cost, this heater does not employ a heat exchanger which would keep potentially poisoned air OUT of the heating system. Nearly every engine blow-by seal can add fumes to the passenger compartment. More insidiously, however, is the possible introduction of combustion exhaust by way of exhaust packing failures and/or head gasket problems.
    While I think these cars are terrific, I cannot get past the absolute miserable design of the heating system.

    1. Both of my Corvairs (a ’61 van and a ’62 sedan) have a stock gasoline heater in front of the passenger firewall. The combustion happens outside the cabin and is exhausted under the vehicle. No fumes, no vapors. It heats a lot faster, too.

    2. So don’t heat exchangers exist NOW, that could be placed on all extant corvairs via recall, so NO possibility of monoxide-poisoning could occur?

  9. I owned a 66 Monza with the 110 and a Powerglide during the 1990’s. It was without a doubt the best driving and riding car I have ever owned and I regret selling it. I would like to buy another one, but this time I think I’ll get one with the 140 engine and maybe a manual transmission, though the Powerglide is not a bad transmission.

  10. Not all Corvairs used engine air for heat.

    My father and I both owned 1960 model Corvairs. In each vehicle, cabin heat was supplied by a Stewart Warner gasoline fueled heater mounted in the front trunk (even less room for luggage!). These were factory equipment items as evidenced by the their coverage in the official Corvair shop manual.

    My 1960 Corvair, my first car, lasted all of 2 months until I totalled it in a rollover. Without the benefit of seatbelts, I walked away with a sore arm from hitting the inside of the driver door.

    I later acquired a 1961 Corvair Loadside pickup which was built without a heater (of any kind). However, it was obvious provision had been made in the design for a gasoline heater to be mounted below the dash on the passenger side of the cab. I believe later models of the truck and van utilized engine heat via ducting.

    Subsequently, I owned a 1961 model Corvair with a 4 speed manual tranmission, a Corvair passenger van and a 1965 model convertible with the four carb 140 HP engine. All of these vehicles were enjoyable rides.

    Thanks for an informative and entertaining article!

  11. Nice article on one of my favorite cars! One small correction, the Astro 1 engine mounted two, three throat carburetors, one for each bank of the flat six. It was proposed in one of the Corvair histories that GM used in-house carb castings with Weber 40IDA3C internals. That carb was used on some Porsche 911s, the 914-6, and early Ferrari Berlinetta Boxers, I believe.

    1. Thanks for the correction — I’ve amended the text.

  12. [quote=Stuart Linderman]While I think these cars are terrific, I cannot get past the absolute miserable design of the heating system. [/quote]

    If the CO2 alarm goes off, your only recourse is to open the windows until you can fix the leak, right? Doesn’t make me want to run out and get a Corvair!

    At some point [i]Consumer Reports[/i] wrote about a man who had reached an out-of-court settlement with GM. He’d driven a Corvair van for some years in his business and suffered serious long-term harm from exhaust fumes. Part of the agreement was that he couldn’t comment publicly, so [i]Consumer Reports[/i] had nothing to report beyond that.

    [i]Road & Track[/i] had an article in the late 1960s, when the Corvair was still in production, about what the Corvair should have been, and still could have been if GM had had the corporate desire. This is from memory and therefore sketchy, but they said the Corvair had always been sloppily built, and burned and leaked oil. IIRC, they also suggested a carburetor setup and gave an estimate of the power it would have yielded–less than the turbo’s notional 180 hp, but a realistic rating, unlike the turbo’s.

    Some years ago I was flipping through a book for Corvair owners on the news stand, and it made a couple of points that interested me:

    1) The mule-drive fan belt was narrower than most fan belts. Owners were cautioned that if they put a generic fan belt on a Corvair, it would ride too high in the grooves and be thrown.

    2) In its lifetime a Corvair would leak or burn ~$120 worth of oil. There was no repair for $120 that would put a stop to it, so owners should top up the oil and take it philosophically. This was written before the advent of Viton seals.

    1. In fairness, a great many older cars leak and/or burn substantial amounts of oil, even when they’re in good mechanical health. Most of the Corvair owners to whom I’ve spoken acknowledge that the engine does leak oil, but as mechanical foibles go, it’s hardly egregious. A friend of mine, who is presently restoring a second-generation Corvair, notes philosophically that the oil seepage of his car did at least keep the engine trim from rusting…

  13. [quote=Administrator]The de Dion, which was popular for racing, but used only sporadically on production cars, was not really an independent suspension; it mounted the differential on the frame or monocoque, so it didn’t contribute to unsprung weight, but connected the wheels with a sort of telescoping beam axle.[/quote]

    In the early 1970s an issue of [i]Road & Track[/i] had a pull-out suspension supplement, bylined by then engineering editor Ron Wakefield, covering the various kinds of suspensions.

    According to the supplement, de Dion suspensions traditionally had a beam axle, but not a telescoping one. The half-shafts would be splined so the rear wheels maintained a constant track as the suspension worked. Wakefield went on to say that the splines (at least in years past) tended to bind, hence the telescoping axle (and no splines) on the Rover P6. Rover accepted the changing track, and some tire scrub, as the tradeoff. Wakefield also said that modern splines didn’t have the binding problem.

    The Alfetta of the 1970s was so named because its namesake racer had a de Dion suspension.

    1. That’s a good point — thanks for the clarification. What I was trying to get at was simply that the de Dion tube has to have some provision for limiting track changes.

  14. I read Unsafe At Any Speed many years ago, and the details that stay with me today are: 1) many people were hurt or killed when their ’60-63 Corvairs rolled over, 2) in some of these accidents, the outside rear tire would be pushed off the rim (“breaking the bead”), emptying it of air, and 3) sometimes the outside rear rim would [b]gouge[/b] the pavement. Apparently the outside rear half-shaft would briefly become vertical during a rollover! It all sounded much more dramatic than your very technical description. :-)

    stuart

    1. I have no statistics on Corvair crashes, so I don’t know if rollover fatalities were significantly more common than on other cars. (I don’t recall Nader providing such statistics; the incident you’re referring to was his description of a specific nonfatal crash in October 1960, in which a woman lost her arm when her car flipped over.)

      While the description of tire gouges in the pavement are dramatic, I don’t know that they’re revealing. In any situation where the tread separates from the rim while the vehicle is in motion, the likelihood of damage to the pavement, the wheel, or both is quite high — you have a relatively thin section of steel or aluminum alloy, backed by at least a ton and a quarter of weight and a great deal of kinetic energy. Furthermore, passenger car tires of that vintage were generally much less robust than modern tires, and were often operating near or above their maximum loads. It was possible for an average car or station wagon to suffer a blowout or tread separation simply from overloading/overheating, without any specific severe maneuver. If a 4,500-pound wagon suffered a tread separation at 70 mph, I would be surprised if its wheel [i]didn’t[/i] gouge the pavement.

      As for the half-shaft, it was connected to the differential by a universal joint, which gave it a fairly broad arc of motion. If the car were rolled or flipped by whatever means, it would seem likely that at some point in that motion, the half-shaft would be at least briefly vertical, simply as a result of its geometry.

      I’m not implying that the accident(s) described did not occur, or that wheel tuck-under could not cause the tire to lose pressure. However, even in that event, details like the gouged pavement or vertical half-shaft would be [i]results[/i] of a rollover, rather than the cause, and neither was necessarily specific to the Corvair.

      1. My 3rd Corvair was a ’65 Corsa convertable w/ the quad-carb 140hp engine and 4 speed manual. I got it seriously sideways at high speed yanking the wheel left to avoid an accident on a 2 lane highway. The heavy rear-engine swung us around into oncoming traffic with me frantically spinning the *slow* steering right-right-right. It eventually righted and we slid onto the left shoulder, more or less straight. As the dust was settling, we noted that BOTH wheel covers from the right side had popped off the rims and were rolling on down the road on their own. I can personally vouch for the suspension improvements in the later Corvairs.

        Side notes:

        The carburetor float axles were aligned with the longitudinal axis of the car. This meant that in hard cornering the floats would slosh closed or flood the engine. Several contemporary hot-rodding books address this problem including adding balance springs to the floats or rotating the carbs 90deg. I did a little autocrossing in the Corsa and never did get happy with that.

        The oil leak/heater thing could be solved with new exhaust gaskets and slathering the pre-viton pushrod tube ‘O’ rings with thick, aluminum based anti-seize compound. It carried away some heat so it couldn’t cook the rubber. Never had a problem with the heater after that.

        When I sold the 1st Corvair (a ’64 Monza Spyder, turbo) I took the prospective buyer across the San Mateo Bridge (SF Bay Area), hitting 130mph before the curved riser on the San Mateo end. It was still winding up. He bought it on the spot.

  15. These come to mind for me:

    NSU 1000
    Hillman Imp
    Karmann-Ghia Type 34

    What were the other ones you were thinking of?

    1. Mazda Luce coupe, almost a 1:1 copy.

    2. …Meaning cars whose styling was clearly influenced by the Corvair? I would add:

      ZAZ Zaporozhets 966/968
      Fiat 1300/1500
      Panhard 24
      BMW 2000 CS

      Few Amercian cars had more impact on automotive styling in the 60s. What other car influenced the Soviets, the French, the Italians, the Brits, the Japanese and the Germans?

      1. The Luce Rotary Coupe was styled by Bertone rather than Mazda’s in-house, but if I dug around I’m sure I could find other Japanese cars that show a Corvair influence.

  16. I enjoy the thoroughness of your article and the facts.
    I own a 1960 in Bolivia that I have completely rebuilt, and I drive it daily through the mountains enjoying how well it handles.

    1. The Mountains of Bolivia? Wow. A 1960 Corvair would not be my car of choice to tackle the Camino de la Muerte…

  17. The National Automobile Museum in Reno, NV also has a copper-cooled four on display. I think they indicate it is one of only about two surviving in the wild.

  18. really enjoying your various topics you’ve written on.
    re- 1960 corvair 4 speeds. engineering did build and test 4 speed transmissions for 1960 corvairs, but it never became a regular production option for that model year, despite a published road test of a 4 speed car in one of the major enthusiast magazines, and many rumors in the press noting it ‘would be available soon’. production of the transmission was close enough that it is included in the 1960 assembly manuals, but is further noted as ‘option cancelled’, and chevrolet zone offices sent letters to dealers explaining "chevrolet central office has advised us that the 4 speed manual transmission for the corvair will not become available for the 1960 model year.’
    the 4 speed did go into regular production for the 1961 model year, now with cast iron case and 16 spline mainshaft that was used through the rest of corvair production.
    in the early 60’s, corvairs had a higher percentage of 4 speed installations than any other american car short of the corvette.

    The corvair society museum in Ypsilanti (part of the heritage trust museum) has a ’60 model prototype 4 speed on display.
    regards
    larry claypool
    technical editor
    corvair society of america

    1. Thanks for the information. I hadn’t assumed the four-speed was available until the start of the ’61 model year in the fall of 1960, but the way the article text was worded was misleading, so I edited it a bit.

  19. The swing axle was sometimes used in Europe and Britain as a cheap way of providing independent rear suspension but like any cost cutting option it had its drawbacks and was controversial over here as well as in America. My personal experience was with the Triumph Herald and Vitesse which handled very well up to a point but if that limit was exceeded the cars would become quite a handful to an experienced driver-the rear wheels would tuck themselves under and the oversteer was alarming and if you applied the brakes when cornering you were really asking for trouble.The Corvair also had the disadantage of the rear engine layout on top of the crude rear suspension.To a nation of people raised on conventional but safe handling cars the rear engined Chevy and its original cheap cost cutting suspension deserves its bad handling reputation.

  20. Corvair- what memories! My buddy’s parents owned a Corvair and a Lotus Elan (talk about contrast!)- mainly, I remember how, back in the day: 1. the motor of the Corvair was popular as a transplant into VW vans and 2. the motor leaked oil like a sieve, even when compared to contemporary vehicles. My brother has an Austin Healey: no oil leaks whatsover- imagine a BRITISH car engine making a US car motor look bad!

  21. I have one and luv it.

    Its a fun car to drive and always get complements.

  22. FYI: A correction MUST be made about the Copper Cooled Chevy, there is a 1923 Copper Cooler body and cutaway motor (separate) in the Buick Gallery In Flint MI, USA. Please correct this soon.

    1. Fair enough. There are actually several survivors, although not many and not always in one piece. (There’s also an engine in the Heritage Center.)

      1. Thanks for the acknowledgement. If anyone at Flint’s Buick Gallery or any other owner (owner or institution) of a copper cooler (motor or car) reads this, I think they would probably be grateful for their acknowledgement (technically).

  23. Excellent article! I’ve known the story for many years yet your piece added texture and background I haven’t seen before. One comment: You mention that ’65 Greenbriers were “left over” ’64s. I don’t think this is the case there are more than a few differences in the engine and trim that indicate continued development and of course production dates fall in the ’65 model year. In my understanding, the commercial version of the ChevyVan replacement was ready for the ’64 model year but the passenger version, the SportVan was not. Chevrolet decided to keep the Greenbriar (but not the Corvan or Rampside) in production until the SportVan was ready later in the model year.

    1. You’re likely correct on the ’65s. There was also a surprising number of year-to-year engineering changes on the late Corvair passenger cars, particularly considering that development had theoretically ceased. One would assume that after ’65, the cars would all be pretty much the same except for safety and emissions modifications, but in talking to people restoring the second-gen Corvairs, that’s not the case (although a lot of those changes are not reflected in the shop manual!).

  24. Excellent article! Two notes:

    The last engine pictured in the article does not in fact have air conditioning. Air conditioned Corvairs had the usual GM 6-cylinder swashplate A/C compressor mounted in the position of the alternator. The alternator was swapped to the opposite side, replacing the idler pulley. Interesting trivia: the compressor was built to run in the opposite direction for the Corvair, and such units were painted green rather than black to distinguish them. Speaking of which, a big advantage of the Gen II Corvair over the ’65-66 Mustang was the fact that the Corvair A/C was completely integrated into the instrument panel, rather than being a hang-on unit. Unfortunately it was not possible to get A/C on the turbocharged Corsa.

    One bit of forgotten history you may want to add: The 1966 Corvair was the first production car ever fitted with a front chin spoiler. I wrote about it here:

    autouniversum.wordpress.com/ 2013/11/21/ advent-of-the-downforce-inducing-aerodynamic-appendage/

    The wind-wander problem associated with rear-engine cars of the period was not actually a direct result of the rear engine location; all cars of the era had huge amounts of aerodynamic lift at the front. However, having a big heavy engine up in the nose largely mitigated the problem. The 1966 Corvair solved the issue by addressing the root cause.

  25. All Corvair generators and alternators were mounted on the driver’s side of the engine. The a/c compressors were always mounted on the passenger’s side.

    1. The a/c compressors were driven by a belt directly off of the crank pulley.

  26. I had three Corvairs when I was young: a ’62 Spider (turbocharged) that I bought for a song because its turbo had ceased, a ’65 Powerglide sedan that was an acceptable car, and a ’66 Corsa convertible (4 carb) on which I installed Michelin radials, short steering arms (for fast steering), and copper sinterred brake linings. It was like a poor man’s Porsche. The car was very reliable and great fun to drive. I almost bought a similar one on e-bay recently (I think the owner wanted about $12 grand for it) but decided on a TR8 instead. The ’66 had a number of detailed improvements over the ’65.

    1. Almost every year of the Corvair’s run had some significant detail improvements, which can be a little confounding.

  27. You did not mention that Ralph Nader finally got NHTSA to conduct a defect investigation into the first generation Corvair handling and stability. The initial finding, based on testing a fully loaded Corvair found no problem. In fact, according to its first report, the NHTSA engineers could not get the car to roll over. Only later did one of the engineers test a lightly loaded Corvair which immediately rolled. The second report discussed the fact that the primary safety problem with the Corvair was that it understeered up to a lateral acceleration of about 0.3 g, but then changed to violent oversteer in less than 3/4 second — faster than most driver’s reaction time. With the oversteer, the Corvair slid so that it was sideways to its direction of travel, and would easily roll over as its outboard rear wheel tucked under. Unfortunately, there were no good crash statistics at the time that would have documented the number of rollovers that resulted. There is extensive documentation of this story in a Senate report published around 1974.

    1. The NHTSA investigation is indeed mentioned in the article — look at the paragraph below the photo of Ed Cole. I have not read the subsequent Senate report, though, which would be worth a look. Do you have any more details on it?

  28. Along with the having the anti-roll bar as standard from the outset, would the Chevrolet Corvair have benefited from the all-alloy BOP 215 V8 to better equip it against the Ford Mustang V8s (similar to the rear-engined V8s in Tatras)?

    1. I’m going to say probably not. First, while people have certainly installed V-8s (including the Buick 215), the Corvair wasn’t designed for a V-8 or a water-cooled engine and installing one is a pretty elaborate exercise. (The Crown Corvair, q.v., is a fun toy, but not long on practicality.) A production V-8 Corvair would have been cumbersome (and thus expensive) to build and would probably have sacrificed a lot of mechanical commonality with the standard car. On top of that, the aluminum 215 was itself wasn’t cheap to build and Chevrolet would have had to buy the engines from Buick at a markup, making it even more expensive. (That’s one reason Pontiac was so reluctant to use the aluminum 215.)

      If you put all that together, it would have been hard for Chevrolet to keep the price down, which would have made the car a tough sell against the Mustang, whose mechanical stuff was all pretty much off-the-shelf. Keep in mind that this is sixties GM, which considered anything under 100,000 units a year to be small beer.

  29. You say that the Doyle Dane Bernbach ad campaign for Volkswagen was a factor in green-lighting the Corvair project in September 1957 but Doyle Dane Bernbach did not get the Volkswagen account until 1959.

    1. Eek, thanks for the correction! I’ve amended the text and am kicking myself for not having caught that before.

  30. SECOND COMMENT: The Corvair 4-speed manual transmission would not take a lot of abuse. Pontiac used a similar transmission for their 4-cylinder Tempest, however they wouldn’t install it behind the aluminum 215″ V-8, nor the 326″ which was optional in 1963. V-8 Tempests had the choice of 3-speed manual or Tempestorque automatic (which was similar to the ‘Vair Powerglide).

    1. The four-speed was originally a low-cost adaptation of the original three-speed, so that’s not surprising. My understanding was that even the Tempest three-speed, which I assume was beefed up a bit for 1963, was marginal with the 326. I recall that Car Life broke a gear of theirs, which if I’m remembering correctly was behind a modestly hopped-up Royal Bobcat 326. Looking at the comparative torque figures, it seems like it was just more than the Corvair transmission was ever designed to take.

      1. I had a friend with a 1964 Corvair (110-hp?) which was supercharged with a Paxton blower, 4-speed transmission and 3.55 Positraction gears. Also, the ‘Vair was fitted with Michelin X steel-belted radial tires. This guy swore it could lift the front wheels off the pavement on acceleration.

        The gauntlet was tossed (and I believe money wagered). Our proud Corvair owner nailed the throttle and dumped the clutch…

        Next trip was on the back of a tow-truck to the local Chevrolet dealer, being the clutch, pressure-plate, two synchros in the tranny, ring & pinion and Positraction unit were damaged. The service department put everything back together (customer pay).

        The fool tried the stunt a second time, with similar results; and I don’t believe the front wheels left the ground THAT time either.

        (Methinks the Chevy service department named him a star customer. And I’m not aware of a third attempt.

        1. That’s very funny. You’d think after the first time, he would have learned an important lesson, like considering, “Even if I win this bet, will it be enough to pay for rebuilding the entire drivetrain again?”

          1. The guy was a bit on the strange side. Had some money behind him. Thought the Corvair was: “…the most superior car on the road.” (Then-1966) everyone is entitled to their own opinions. I guess he never drove a Corsa.

            They were interesting cars and I “wrenched” on a few as a mechanic; but no desire to own one. Aside from tricky handling (60-64) the steering box was right behind the front bumper and a serious crash would displace the steering mechanism and wheel up and back 18″. Not an indictment on the Corvair as several other makes also placed the box and un-collapse able steering column in the same location.

  31. A major Corvette enthusiast related Chevrolet’s experiments with a mid-engine platform. I believe it had a 327 hooked to an early Pontiac Tempest transaxle. They used the automatic version knowing the 4-speed wouldn’t handle the torque of a 327.

    1. That would make sense, since the 327 had nearly three times the torque of the Corvair engine and over 50% more than the slant-four Tempest, which is a lot to ask of an unmodified or even lightly modified manual transaxle. I assume TempesTorque was more forgiving in that regard, since the direct clutch (which seems like the most obvious failure point) could be beefed up without an extensive transmission makeover. It’s conceivable that TempesTorque also had a higher torque capacity to begin with — I’ve never seen any factory figures for the transaxles — since Pontiac didn’t offer most of the hotter engine options with the three-speed.

  32. ANOTHER FUNNY ‘VAIR STORY: I had a customer with a really cherry ’64 Monza Convertible. Even though it was 10-years-old it was in “like new” condition.

    One day he called me up complaining that it was almost impossible to start in the mornings. We arranged for it to sit overnight and I went to work. Long story short, I found a bad electrical connection (they lived near the ocean) and there was no 12-volt “kick” to the coil in the start mode. I finished the tune-up and it instantly started at the first turn of the key.

    A couple of weeks later and I happened to run into the owner, with the standard question; “How is your Corvair running?”

    Owner replied that I f*cked up… Being I prided myself on quality work, what the???

    Seems right after I worked on it it was stolen right out of his garage in the dead of night. It was never recovered. (Methinks it was cut up and made into a dune buggy:-(

  33. CORVAIR OIL LEAKS: I worked in the service department of a large Chevrolet dealer in the late 1960’s. Common places of Corvair oil leaks were 1) push rod tube seals. (Later cured by improved sealing materials). 2) Valve covers. (Cured in ’65 with wider retaining brackets instead of washers and proper torquing.) 3) Oil filler cap and sealing surface on the filler tube becoming distorted by the constant pressure of engine oil whipped up by the crankshaft. 4) Oil pressure switch failure. (This, however, is not limited to Corvairs as many domestics of the era used the same design).

    With many years and thousands of miles, heat and vibration can cause many other opportunities for leakage today.

    I also remember complaints of burned valves (the Spyder used upgraded (stellite) valves.) Also hydraulic lifter issues. Part of the lifter issues may be due to the oil available then. Today’s lubricants, for the most part, are superior. 93 octane (if available) and a lead additive may help with the valve issues.

    I posted this previously but it may have been lost in cyberspace. My apologies on repeating myself.

  34. “claimed that Chevrolet engineer Frank Winchell actually flipped a Corvair prototype”

    Flipping is end over end and very difficult to accomplish, rolling is a sideways motion.

    Are you sure you meant flip and not roll?

    1. DeLorean described it as a flip. Lacking more details, or photos/videos, of the alleged incident, I’m loath to second-guess it further. However, the idea that “flipping” can only refer to one specific direction of motion strikes me as unhelpfully and unnecessarily prescriptive. I can envision a variety of scenarios that the average person (and I) would likely describe as flipping sideways or flipping diagonally and that are clearly distinct from a roll. Short of some kind of formal engineering paper or research study where you’re defining very specific categories for some statistical or analytic purpose, that seems a perfectly reasonable colloquial description.

  35. When I was 16 years old I owned a 4 speed 63 Monza 110 HP coupe in 66 that was my first car. It cost about $850 dollard used with less that 35,000 miles on it. I loved it and drove it every where in the Tampa bay area. I would load all my buddies in it and we would chip in and drive to Clearwater beach and all over the Gulf beaches for $3 dollars worth of gas from the north Tampa Area near Bush gardens. We would road race our buddies around the University of South Florida’s roads which were not built up and sparsely populated back in the mid 60’s. It was defiantly my Poor Mans Porsche. I loved to drive it fast and broad slide it on the many dirt roads that still existed then and even through the many Orange Groves in the area. There was this dirt oval of sorts around this pond in the woods near the USF area that we called the Duck Pond that people would bring their old stock cars, dune buggies and jeeps out to race each other. It was wild, the police never bothered us and I cant believe no one ever got hurt to my knowledge. I let one of my close friends drive my prized Corvair around the Duck Pond oval going faster and faster until he went the wrong way around this dead tree that was just past one corner that had a ditch across the path that bottomed the suspension and shoved the engine back into the cross member behind the crank pully snapping off the oil filter housing and dumping oil all over the engine and the dirt track that we were racing on. so now I am broke down out in the middle of these woods with no oil in my engine and how am I going to have to tell my dad that this happened ? I got towed home by one of my friends who was also there and the next day I bought a new oil filter housing piece from Dempsey Chevrolet in Tampa for about $4 dollars and changed it out.
    I kept it until 1969 when I traded it in for a brand new $2500 dollar Opel Cadet Rallye because the Corvair had a screwed up starter gear on the engine that ate up the gear on the starter in no time that required pulling the engine and replacing the clutch and pressure plate that the starter ring gear was attached to. I had to push start that car or park it on inclines and let it roll backward and start it in reverse or roll it going forward. I had few tools then and my mom hated me working on my car in our car port where we lived so I traded it for the Opel. It cost me $65 dollars a month to finance back in 1969. Some day I will write about the 66 4 door power glide hard top that was given to me about 20 years later when I was doing car repairs that I moved away and left behind at my old place because I had no help and way to move it to my new shop after having moved about a dozen other cars of mine that did not drive but ran that I had some help with moving. I still miss both of them more than about any other cars that I have ever owned.

  36. What is the story behind Peter Brock’s Isetta (later Beetle) challenging rear-engined 2-seater 1956 GM Cadet concept and the potential role it played in the development of the Chevrolet Corvair?

    The 1956 Cadet concept featured a 67-inch wheelbase, was to be powered by theoretical an air-cooled 2-cylinder (not sure it is was an Inline or Boxer layout) and priced at $1000, being similar to the BMW 700 yet slightly smaller with a lengthened (possibly 4-seater?) version being considered at one point as a challenger for the VW Beetle and Renault Dauphine.

    GM rejected the project, only to later resurrect it with the project eventually evolving into the Corvair.

    Also where can I find out more about the Chrysler A-106 project?

    1. According to the account on Brock’s company website, the rear-engine Cadet was a styling exercise Brock did with encouragement from Harley Earl (whose name the BRE website curiously misspells). While a full-size model was built — there’s a photo of Brock sitting in it — I don’t know that it had any powertrain in other than a hypothetical sense. Since the project came from Styling (and I think one of the corporate Advanced studios at that), I doubt it.

      I think its connection to the Corvair was probably close to nil. Chevrolet’s advanced engineering group was already pursuing the air-cooled/rear-engine layout, and had been even when Styling first hired Brock; it was a pet project of Ed Cole’s. The Cadet concept doesn’t seem like anything Chevrolet would have seriously considered building in the mid-fifties, not least because the $1,000 price point was even less realistic than it had been for MacPherson’s Cadet project a decade earlier. The mini-Cadet was a cute concept, but I’m pretty sure that’s all it was.

      An important thing to remember about GM in that era is that it was enormous and had lots of largely autonomous divisions and departments that were really quite separate in an organizational and operational sense. Many of them were involved in various sorts of experimental projects, many of which were far removed from any immediate likelihood of production and which were in many cases separate from one another. Of course, some ideas and concepts did pass interdivisionally (the 1963 Buick Riviera is a good example), but many did not, and I think in a lot of cases, the left hand didn’t talk to the right. However, looking at it from outside and in retrospect, it’s easy to presume connections or cohesion that didn’t necessarily exist.

      1. I see. The mini-Cadet concept of 1956 immediately brought to mind the notion by some of GM at one point looking at a family of downscaled rear-engined versions of the Corvair concept, based on how the Corvair’s Flat-Six engine either was from the outset or became a modular design capable of spawning a Flat-Twin or Flat-Four at one end to a Flat-Ten or Flat-Twelve at the other end.

        Would a version of the small 1956 Cadet concept have been more suitable had it been produced in the UK or Germany, especially since Opel were developing a 700cc version of what became the Opel OHV engine?

        The closest equivalent that GM in Europe seemed to have looked at is the front-engined FWD Vauxhall XP-714 project after the Mini appeared.

        Do any images exist for the Chrysler A-106 prototype?

        1. Had the rear-engine Cadet been developed by or for Vauxhall or Opel, it might have had marginally more production potential, but it appears to just been a Styling experiment that Harley Earl happened to think was neat. (I’m not entirely clear what studio Brock was in during his brief stint at GM Styling, but I gather it was one of the experimental studios, which would make sense given his very young age and lack of experience or seniority. Production-track designs were something I think you had to sort of work up to doing.)

          The Corvair was not a corporate project, it was a Chevrolet project — a significant distinction in those days. Had it been the brainchild of one of the corporate Engineering Staff groups, they might have tried to make it a modular engine design, if only to see if there were patents they could secure in that realm. As far as I know, making a modular engine wasn’t part of the brief for what became the Corvair. Robert Benzinger, who did a lot of the engine development work, said that they settled on the flat-six layout pretty early on and had quite a struggle getting that to work. One very significant point Benzinger makes in that regard is that with an air-cooled automotive engine, the differences between an H-4 and an H-6, and presumably an H-6 and multi-cylinder variations, are not trivial and are a lot more involved than just adding or removing cylinders from a liquid-cooled inline engine.

          On the Chrysler A-106, I’ve been pondering that. I don’t specifically recall if I’ve seen any published photos of the earlier iterations. There may be some in the Collectible Automobile article on the early Valiant and thus in the HowStuffWorks.com article (many of their automotive articles are repackagings of earlier CA pieces).

          1. Managed to find some info on the Chrysler apparently it was to feature a Flat-4 engine of as yet unknown displacement and power.

            There was also the two Chrysler Cadet projects, the first developed in parallel to A-106 and the second during the early 50s though am not sure what engines were to feature in both projects.

          2. Both Ford and Chrysler wrestled with the question of whether to use a four or a six, eventually settling on the six. (Chevrolet apparently did as well, although it appears they settled on the air-cooled six for the Corvair very early on.) I’m sure from the standpoint of everywhere else in the world, it looked like complete madness: “We must economize! Absolutely NO more than 3 liters displacement!” It was not without reason — fuel wasn’t that expensive, only a few states used taxable horsepower-based registration fees, and Detroit assumed that Americans felt the same way about using the gearbox as they felt about visiting the dentist — but it does provide some hints about why U.S. automakers later struggled so badly coming up with decent C-segment cars.

  37. I can vouch for the improved ’64 rear suspension anti-camber spring. As a fearless (stupid) 17 year old I loved to hear the rear wheels (worn bias plies) squeal around long bends. Once…and only once, they did break loose and I found myself doing a 180, smashing flat against the curb and the passenger side rear tire/wheel smashing square on a steel sewer drain. The impact separated the tire from the rim but the spring/shock kept things from caving in and possibly tipping the car. The car landed (on all 4 wheels) up and over the curb, on the grass. All my graduation money went to fixing the car but I did learn something about the car’s limits.

Leave a Reply

Your email address will not be published. Required fields are marked *

Click here to read our comment policy. You must be at least 18 to comment. PLEASE DON'T POST COPYRIGHTED CONTENT YOU AREN'T AUTHORIZED TO USE!
Except as otherwise noted, all text and images are copyright © Aaron Severson dba Ate Up With Motor. (Terms of Use – Reprint/Reuse Policy) Trademarks referenced herein are the property of their respective owners and are used here for informational/nominative purposes.