Contrary Compact: The Life and Death of the Chevrolet Corvair

CONTRARIAN TENDENCIES

Neither the Corvair controversy nor Ralph Nader’s crusade hurt Ed Cole’s career. In October 1967, the GM board appointed him to succeed Jim Roche as GM’s president and chief operating officer. In that role, Cole oversaw the development of the Chevrolet Vega, a new subcompact car that was, in its way, almost as ill-starred (pun intended) as the Corvair. Cole remained president until reaching GM’s mandatory retirement age in September 1974, when he was replaced by E.M. (Pete) Estes. After leaving GM, Cole became chairman of the Checker Motor Corporation. He died in a crash of his private plane in May 1977.

Ed Cole photograph POR-COLEEDW-0006 Copyright 2010 General Motors LLC. Used with permission, GM Media Archive. (GMMA 141571)
Ed Cole was president of General Motors from October 30, 1967 to September 30, 1974. (Copyright 2010 General Motors LLC. Used with permission, GM Media Archive.)

Few of the 150 or so lawsuits filed by Corvair owners made it to trial and GM won most of the handful that did. The large majority were settled out of court. In 1971, responding to pressure from Ralph Nader, the National Highway Traffic Safety Administration (NHTSA) ran extensive tests on a 1963 Corvair. The NHTSA’s 134-page report, published in July 1972, concluded that the early Corvair’s handling, stability, and rollover risk were no worse than those of the early Ford Falcon or Plymouth Valiant and were actually somewhat better than the contemporary Renault Dauphine or Volkswagen Beetle. The NHTSA then hired three independent engineers to conduct a follow-up study, which returned similar results. In August 1972, the NHTSA sent a letter to all Corvair owners declaring the agency’s conclusion that the early cars were not defective.

In 1974, Chevrolet executives told historian Michael Lamm that Nader’s charges had no real effect on the Corvair’s fate. Even if Unsafe at Any Speed had never been published, GM had already decided to let the second-generation car die a natural death. Many observers have wondered if Nader’s attacks led GM to keep the Corvair alive longer than it otherwise would have just to spite the critics, although everyone Lamm interviewed insisted that wasn’t true. Nonetheless, GM was sufficiently embarrassed by the whole affair that the Corvair virtually disappeared from its official company histories for several years.

More than 40 years after its birth, the Corvair remains controversial. The original model still pops up on lists of the worst cars ever built; as Ralph Nader pointed out in 1965, even some of the journalists who originally praised the Corvair savaged it once it was gone. Some historians call the Corvair a failure, a sentiment that must be carefully qualified. After all, it’s difficult to describe a car that sells 1.8 million units as a flop, and the Monza was a genre-defining success. From a public relations standpoint, however, the Corvair was a debacle, casting a pall that neither the car nor GM has ever fully overcome. Fans will insist that the NHTSA reports exonerated the Corvair, but few engineers have ever really disputed the nature of the early cars’ handling peculiarities, only their severity and whether or not they were unreasonably hazardous. Since most modern Corvair owners know what to expect from their cars, it’s become a moot point.

1961 Chevrolet Corvair Monza badge
The lawsuits and the damaging publicity of Nader’s book left the Corvair with a rather shabby image. To move the final unsold 1969 models, Chevrolet resorted to offering a $150 voucher good toward the purchase of another new Chevrolet.

Surviving Corvairs are moderately collectible, although less so than early Mustangs or Camaros. As with the Porsche 914 and other cars maligned in their day, aficionados staunchly defend the Corvair’s virtues (although there are distinct early- and late-model factions) while taking advantage of its modest prices.

The Corvair was ahead of its time in many respects: monocoque construction, aluminum engines, and independent rear suspensions are now ubiquitous and rear engines have begun to reappear on microcars like the smart fortwo and Tata Nano. On the other hand, you could fairly question whether all the technological fuss was worth the effort. For all its engineering novelty, the Corvair’s performance was little better than that of a contemporary Falcon, a Valiant or, for that matter, Chevrolet’s own Chevy II.

If the Corvair had a singular advantage, it was that was different. Indeed, by the standards of early-sixties domestic sedans, it was positively contrary. If it was flawed, it also had character where the Chevy II was merely anonymous. The Corvair was one of a tiny handful of American cars of this era that dared to break the mold, and perhaps that is itself worthy of celebration. There are still thousands of enthusiastic Corvair fans who would agree wholeheartedly.

# # #

ACKNOWLEDGMENTS

The author greatly appreciates the comments and wisdom of Corvair enthusiasts Bob Nichols, Mark Fernandez, Greg Vargas, and the members of South Coast CORSA. Special thanks to Kathy Adelson of the GM Media Archives for providing the archival photo of Ed Cole.


RELATED ARTICLES


NOTES ON SOURCES

Our sources for this article included Gary Aubé, “Corvair Crosa,” (2000–2006, www.corvaircorsa. com, accessed 15 July 2010; the Auto Editors of Consumer Guide, Encyclopedia of American Cars: Over 65 Years of Automotive History (Lincolnwood, IL: Publications International, 1996); “How Chevrolet Corvair Works” (14 June 2007, HowStuffWorks.com, auto.howstuffworks. com/ chevrolet-corvair.htm, accessed 14 July 2010); “1960-1962 Plymouth Valiant” (28 August 2007, HowStuffWorks.com, auto.how stuffworks. com/ 1960-1962-plymouth-valiant.htm, accessed 15 July 2010), “1962-1967 Chevrolet Chevy II” (2 November 2007, HowStuffWorks.com, auto.howstuffworks. com/ 1962-1967-chevrolet-chevy-ii.htm, accessed 14 July 2010), and Cars That Never Were: The Prototypes (Skokie, IL: Publications International, 1981); “AUTOS: Something of a Victory,” TIME 20 January 1967, www.time. com, accessed 17 July 2010; “AUTOS: The New Generation,” TIME 5 October 1959, www.time. com, accessed 14 July 2010; Patrick Bedard, “If the Corvair Was the Answer, What Was the Question?,” Car and Driver Vol. 24, No. 11 (May 1979), pp. 88-92; Robert P. Benzinger, remarks made at the CORSA National Convention, Seattle, WA, 26 July 1975 (transcribed by Bob Helt and reproduced on the web at www.vv.corvair. org/ Library/ benzinger.htm; accessed 20 July 2010); Ray T. Bohacz, “The Winds of Change: The 1960 air-cooled Chevrolet Corvair,” Special Interest Autos #198 (December 2003), pp. 54–56, and “Under Pressure: The 1963 Corvair Turbocharged Engine,” Hemmings Classic Car #26 (November 2006), pp. 86–89; “Business: The U.S.’s Toughest Customer,” TIME 12 December 1969, www.time. com, accessed 17 July 2010; Bill Carroll, “Inside Pontiac’s Terrific Tempest!” Sports Cars Illustrated October 1960 and “Pontiac Tempest Road Research Report,” Sports Cars Illustrated March 1961, reprinted in Car and Driver on Pontiac 1961–1975, ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 1986), pp. 5-16; Chevrolet Motor Division of General Motors Corporation, “Corvair by Chevrolet: The Prestige Car in Its Class” [1960 brochure], 1959; “Cole, Edward N.” (n.d., GM Heritage Center, history.gmheritagecenter. com, accessed 14 July 2010); Mike Covello, Standard Catalog of Imported Cars 1946-2002, 2nd ed. (Iola, WI: Krause Publications, 2001); Robert Cumberford, “Who Killed the Corvair?” Car and Driver Vol. 15, No. 2 (August 1969) pp. 34-35, 73; Rad Davis, “Forward Control Corvair Primer” (2005, rad_davis.sent. com/ fc1.html, accessed 14 July 2010); Jim Donnelly, “Corvair Connoisseurs,” Hemmings Classic Car #35 (August 2007) 14–23; Jim Donnelly, “Edward N. Cole,” Hemmings Classic Car #32 (May 2007), p. 76; Robert Gross, “Air-Cooled Authority,” Special Interest Autos #180 (November-December 2000), pp. 12–18; David Halberstam, The Best and the Brightest (Greenwich, CT: Fawcett Crest Books, 1973), and The Reckoning (New York: William Morrow and Company, 1986); Bob Helt, “Government Tests Prove the Corvair Does Not Have a Handling or Stability Problem” (n.d., CorvairCorsa, www.corvaircorsa. com, accessed 17 July 2010), and The Classic Corvair (N.p.: Bob Helt, 2001); Maurice Hendry, Cadillac: Standard of the World: The Complete History (Fourth Edition update by David R. Holls) (Princeton, NJ: Automobile Quarterly, 1990); “How Safe at Any Speed? A critical look at ten years’ progress in car safety,” Autocar 28 February 1976, pp. 8–12; Wick Humble, “1961 Pontiac Tempest: But cars aren’t supposed to have curved driveshafts,” Special Interest Autos #48 (November-December 1978), reprinted in The Hemmings Motor News Book of Pontiacs: driveReports from Special Interest Autos magazine, eds. Terry Ehrich and Richard Lentinello (Bennington, VT: Hemmings Motor News, 2001), pp. 74–86; Roger Huntington, “Science and the Chassis Part II: Fundamentals of Suspension,” Car Life Vol. 10, No. 2 (March 1963), pp. 42–45; Lee Iacocca, Iacocca: An Autobiography (New York: Bantam Books, 1984); “Investigations: The Spies Who Were Caught Cold,” TIME 1 April 1966, www.time. com, accessed 17 July 2010; Don Keefe, “1967 Chevy Astro I,” Hemmings Classic Car #15 (December 2005), pp. 64–67; Beverly Rae Kimes, ed., Standard Catalog of American Cars 1805-1942, 2nd ed. (Iola, WI: Krause Publications, Inc., 1989); Mike King, “The Corvair’s Granddaddy,” Motor Trend Vol. 16, No. 8 (August 1964), pp. 84-85; David LaChance, “According to Plan: The 1960 Corvair, built with economy in mind,” Hemmings Classic Car #35 (August 2007), pp. 24–29, “Collector Buyer’s Guide: 1961-1962 Corvair Station Wagon,” Hemmings Classic Car #53 (February 2009), pp. 70–75, “The Connecticut Corvair,” Hemmings Classic Car #77 (February 2011), pp. 40–43, and “Vibrant ‘Vairs,” Hemmings Classic Car #35 (August 2007), pp. 14–23; Michael Lamm, “1948 & 1949 Cadillac Fastbacks: Two Very Important Cars!” Special Interest Autos #11 (June-July 1972), pp. 10-17, 56, and “Martyr,” Special Interest Autos #22 (May 1974), reprinted in Corvair Performance Portfolio 1959-1969, ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 1998), pp. 132-140; Richard Langworth, “Corvairs for the ’70s: What Chevy Might Have Built,” Special Interest Autos #68 (April 1982), pp. 20-27; Karl Ludvigsen’s “The Truth About Chevy’s Cashiered Cadet,” Special Interest Autos #20 (January-February 1974), pp. 16-19; Karl Ludvigsen, “SCI Analyzes Ed Cole’s CORVAIR,” Sports Cars Illustrated November 1959, reprinted in Corvair Performance Portfolio 1959-1969, pp. 5–13, 17; George Mattar, “Cornering Corvair,” Hemmings Muscle Machines #20 (May 2005); Mark J. McCourt, “1965-1966 Chevrolet Corvair Corsa Turbo,” Hemmings Muscle Machines #11 (August 2004), and “Timeline: Chevrolet Corvair, 1960–1969,” Special Interest Autos #198 (December 2003), pp. 22–23; Ralph Nader, Unsafe at Any Speed: The Designed-in Dangers of the American Automobile (New York: Grossman Publishers, 1965); Paul Niedermeyer, “Automotive History: How the 1960 Corvair Started a Global Design Revolution,” Curbside Classic, 15 August 2011, www.curbsideclassic. com/ automotive-histories/ automotive-history-how-the-1960-corvair-started-a-global-design- revolution/, accessed 15 August 2011; the Old Car Brochures website (oldcarbrochures.org); Stuart Shepard, et al, Corvair Basics (N.p.: CORSA, 2003), pp. 59-60; Rich Taylor, “Boss Kett’s Dog: 1923 Chevrolet Copper-Cooled,” Special Interest Autos #30 (September-October 1975), pp. 44-51; “3 Station Buses,” Car Life September 1961, pp. 20–25; J. Patrick Wright, On a Clear Day You Can See General Motors: John Z. DeLorean’s Look Inside the Automotive Giant (Chicago, IL: Avon Books, 1980); and Anthony Young and Mike Mueller, Classic Chevy Hot Ones: 1955–1957 2nd ed. (Ann Arbor, MI: Lowe & B. Hould Publishers, 2002).

We also consulted the following period road tests: “Corvair: Away with the myths, up with an important and very sound new car (Road & Track Road Test 244),” Road & Track November 1959; “Corvair automatic transmission (Road & Track Road Test 235),” Road & Track February 1960; Floyd Clymer, “Road Test of the Corvair ‘Monza,'” Automobile Topics September 1960; “The Corvair 700 de luxe Sedan,” Car (South Africa) November 1960; “Corvair 4-Speed (Road & Track Road Test 266),” Road & Track November 1960; Jerry Titus, “Why Doesn’t the Corvair Handle?” Foreign Cars Illustrated November 1960, “Hot and Cold Running Monzas,” Sports Car Graphic June 1961, and “Driver’s Report: Corvair with RPOs,” Sports Car Graphic December 1961; “Corvair Among Coconuts,” Modern Motor September 1961; “Corvair,” Motor Life November 1961; “Monza Sprint,” Car and Driver December 1961; “Turbocharged Monza Spyder,” Car and Driver June 1962; “Corvair Monza Spyder,” Car (South Africa) July 1962; Harvey B. Janes, “Driving the Corvair Sprint,” Road & Track November 1962; “Car and Driver Road Test: Corvair Monza Spyder: Poor Man’s Porsche adds a ‘Super’ to the top of the line,” Car and Driver May 1963; “EMPI-Equipped Corvair Monza,” Car Life September 1963; “Corvair Monza,” Motor Sports Illustrated December 1963; “1964 Corvair Monza 4-speed, 110-bhp,” Car Life February 1964; “Corvair Sprint,” Road & Track July 1964; Jerry Titus, “’65 Corvairs: Although the changes aren’t sensational, they do make a great deal of difference!” Sports Car Graphic October 1964; John Ethridge, “Corvair Corsa Road Test,” Motor Trend January 1965; “Corvair Monza,” Track & Traffic February 1965; David Phipps, “The Chevrolet Corvair,” Sporting Motorist February 1965; “Corvair Sprint,” Car and Driver September 1965; “IECO Corvair,” Car Life September 1965; “Chevrolet Corvair,” Road Test November 1965; “Ram Induction for the Corvair,” Auto Topics June 1966; John Lawlor, “Corvair – All Washed Up?” Motorcade September 1966; “Chevrolet Corvair Corsa,” Motor 17 September 1966; Tom McCahill, “is the Corvair REALLY Unsafe?” Mechanix Illustrated March 1967; “Corvair Monza Sport Coupe,” Car Life January 1968; and “Retesting a Slow Corvair,” Car Life May 1968, all of which are reprinted in Corvair Performance Portfolio 1959-1969 (Cobham, England: Brooklands Books Ltd., ca. 1998); “Comparing Corvair, Falcon, and Valiant,” Motor Life December 1959, reprinted in Falcon Performance Portfolio 1960-1970, ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 1998); “Corvair Is Exciting to Drive, But Needs more Economy, say Owners,” Popular Mechanics March 1960, pp. 124–128, 272–276; Ken Fermoyle, “The Facts Behind Those Corvair Stories,” Popular Science May 1960, pp. 78–81, 217–218; Ken Fermoyle and Devon Francis, “New U.S. Small Cars,” Popular Science October 1959, pp. 108–121; Devon Francis, “New turbocharger makes Corvair 150 Horses Hot,” Popular Science April 1962, pp. 77–80, 243, and “What’s Coming in the 1963 Cars,” Popular Science July 1962, pp. 46–49; Jim Whipple, “Owners Find Nimble, Sporty Corvair a ‘Fun Car’ With a Few Rough Edges,” Popular Mechanics September 1961, pp. 106–109, 274–280, “Spotlight on the Turbocharged Olds F-85 and Corvair,” Popular Mechanics May 1962, pp. 60–62, and “The ’64s,” Popular Mechanics October 1963, pp. 90–103, 238–240.

Additional information on the mechanics of swing-axle and semi-trailing arm suspensions came from Herb Adams, Chassis Engineering HP1055 (New York: HPBooks, 1993); Johannes W. Rosenkrands, assignor to General Motors, “Swing Axle Rear Suspension,” U.S. Patent No. 3,020,061, applied 11 January 1960 and issued 6 February 1962; and Mark Wan, “Suspension Geometry” (2000, Autozine, www.autozine. org/ technical_school/ suspension/ tech_suspension2.htm, last accessed 14 July 2010).

Some additional background on the M-41 Light Tank came from The Editors of Publications International, “M-41 Walker Bulldog Light Tank” (17 November 2007, HowStuffWorks.com, science.howstuffworks. com/ m-41-walker-bulldog-light-tank.htm, accessed 16 July 2010).


83 Comments

Add a Comment
  1. Yeah, to all intents and purposes the prototype Chev Cadet became our beloved Holden 48/215 or sometimes referred to as the “FX”.

    1. Well, sort of. The 195-Y-15 prototype that became the basis of the Holden FX was a predecessor of the Cadet, built well before the war. It had a few general similarities to the Cadet (including unibody construction and a smaller version of the Stovebolt Six), but it was quite different in packaging and dimensions. (Notably, it did not have strut suspension.) It’s probably fairer to say the Cadet would have been a cousin of the Holden FX; they have a common ancestor, but they followed different paths. Also, the Holden was well along in its development when the Cadet was canceled, so it wasn’t shipped off, the way Ford sent its Light Car to become the French Ford Vedette.

      1. So both the 195-Y-15 / Holden FX and GM Cadet basically used a smaller version of the (2nd gen?) Chevrolet Straight-6 that formed the basis of the Holden Straight-6 engine?

        Guess it would partly explain why the Holden Straight-6 was never able to grow beyond a displacement of 3.3-litres to a size closer to 4-litres.

        1. The engine intended for the Chevrolet Cadet was NOT the Holden Grey Motor used in the Holden 48/215. Where the Grey Motor was largely a scaled-down Chevrolet six, the Cadet engine had a variety of experimental features, including front and rear flywheels, and different bore/stroke dimensions. The similarity in displacement is coincidental; the Cadet engine was oversquare, with a short 3-inch (76.2mm) stroke, where the Holden was undersquare, with a 3 1/8th-inch (79.4mm) stroke. I don’t think they had the same bore spacing, although the Cadet’s was altered during development at least once.

          I don’t have sufficiently detailed specs for the Cadet engine to judge how much of its basic architecture was miniaturized Stovebolt; my guess is “some” (the gear-driven cam, for instance), though not all.

          The limiting factor on the Holden engine’s displacement was probably the bore spacing, which as best I can find was 3.75 inches (95.3mm) for the Grey and 4.05 (102.7mm) for the Red.

          1. Understand.

            Interested to know whether the Bedford / Vauxhall Straight-6 shares any relation to the Chevrolet Straight-6, though have heard it is significantly different to the Holden Straight-6 engine.

            Could a production Chevrolet Cadet have helped GM in other respects regardless of whether it is actually a success or not? Potentially even butterflying away the Corvair in favor of a more conventional layout?

          2. I’m not terribly familiar with the Velox six. I believe it does share the same bore spacing as the Holden Grey Motor, although not necessarily a whole lot else.

            The Cadet would probably not have done Chevrolet any particular commercial favors at the time. I don’t think the Chevrolet sales organization knew (or was interested in figuring out) how to sell it to postwar American buyers whose interest in smaller cars was, at that point, driven more by sticker shock more than anything else. From a technological standpoint, I don’t know that it was substantially more conventional or less eccentric than the later Corvair except in having a FR layout. Some of its advanced features seem not so much prescient as just odd — for instance, the dual flywheels were intended to reduce driveline intrusion by allowing the rear flywheel to be smaller in diameter, which seems an expensive approach to a fairly incremental gain. MacPherson’s original strut suspension layout wasn’t as tidy or cost-effective as the later version (developed after he left for Ford and of course now very common.)

            The configuration of the Corvair seems to have been dictated in large part by the fact that Ed Cole thought it would be neat and had been toying with similar ideas since around the time the Cadet was developed. There was a rationale to some of it (the desire to have low-effort manual steering, for instance), but not necessarily a compelling one compared to the advantages of a conventional smaller car, as quickly evidenced not only by the Falcon, but also by Chevrolet’s own Chevy II.

            So, whether the Cadet would have had an influence would have really depended a lot on how long it was around and how well it had done. If Chevrolet had done well enough with it to justify keeping it around until 1957, when the Corvair was developed, it would have made the rationale for building the Corvair and the latter would have probably remained an engineering exercise. If the Cadet had eked out a few years before being canceled (or foisted on Holden, Opel, or Vauxhall), it may not have made any difference, especially if the tooling were gone by then.

            One possible effect might have been to get Chevrolet to continue developing strut-type suspension, although how that might have played out is hard to judge and would depend a lot on how broadly it was adopted. A first-generation Corvair with all-strut suspension might have been spared most of the actual car’s handling oddities, so there’s that.

  2. I’m a big Corvair fan, and own 5 Corvairs. 3 Early ‘verts, including a Spyder, and a ’66 Fitch Sprint and a ’62 Rampside.
    I read your piece top to bottom, and enjoyed being reminded of the facts. Thank you, Corvairwild

  3. I just want to thank you for your fantastic effort in documenting the inner workings of the car industry, always informative and always entertaining! In each article I learn things I even did not know that I wanted to learn… :)

    It is great to learn the “American” (as in U.S.A.) automotive history since I have only an European perspective – and I can not wait until You take a look at similar cases concerning the Japanese and Korean car manufacturers! ;-D

    Cheers, Niclas

    1. We have done a couple of Japanese cars — the Datsun 510 and 240/260/280-Z, the Lexus LS400, and the Lexus SC/Toyota Soarer — and there will be more in the future. (I’d love to tackle the Mazda RX-7 and Subaru SVX at some point, the Honda Civic CRX is likely, and there will most definitely be an NSX article.) The Korean automakers are probably not going to be popping up any time soon, but I certainly wouldn’t rule it out.

  4. The 55 nomad had a 265CID not a 262

    1. Whoops, that’s a typo. Fixed.

  5. In the article, you mention that early Corvairs had rear swing axle suspension. I think early VWs and Triumph Spitfire had a similar arrangement. Did any (other) cars of the late 1940s or 1950s have a more sophisticated independent rear suspension arrangement (Jaguar, Tucker or others)? Thanks

    1. That’s a good question. Some race cars adopted true double-wishbone suspensions, but I don’t know of any forties or fifties production cars that used that set-up, mainly for cost reasons. Jaguar’s independent rear suspension was developed contemporaneously with the Corvair, but it didn’t appear in production until the debut of the E-Type in 1961.

      The three major alternatives to swing axles in the late fifties and early sixties were the de Dion axle, “low-pivot” swing axles, and trailing arms. The de Dion, which was popular for racing, but used only sporadically on production cars, was not really an independent suspension; it mounted the differential on the frame or monocoque, so it didn’t contribute to unsprung weight, but connected the wheels with a sort of telescoping beam axle. It worked reasonably well on front-engine cars, providing low unsprung weight without radical camber changes, but the axle made it impractical for rear-engine designs.

      Mercedes adopted the low-pivot swing axle approach, which it called [i]Eingelenkpendelachse[/i]; VW came up with something similar in the late sixties. The low-pivot design, as the name implies, arranges the axle half-shafts so the geometric center of their arc of motion is a single point [i]below[/i] the differential, rather than having each axle pivot at the side of the diff. Doing that has two effects. First, it lowers the roll center, which reduces jacking. Second, it causes the swing axles to act as if they’re much longer than they actually are. By increasing the radius of the arc they transcribe, the change in wheel camber is only a few degrees, rather than 15 or more.

      A pure trailing arm suspension is in some ways the opposite of swing axles. The wheels are carried on an arm that hinges to the body ahead of the axle line. The trailing arm allows the wheel to move vertically, but not to change its camber relative to the angle of the body. (As the car leans, the wheel camber still changes, because the arm itself is attached to the body.) Trailing arms don’t induce oversteer, but they tend to produce massive roll understeer instead. With a rear-drive car, however, the axle half-shafts will still influence wheel location unless you have a universal joint on each end of each half-shaft.

      That’s essentially what Jaguar and Chevrolet did for the E-Type and Corvette suspensions (and the second-generation Corvair), although they also added additional lateral links to allow camber gain in turns. It worked much better than swing axles (even the low-pivot variety), but it was more expensive, which is why it was slow to catch on.

      Incidentally, if Chevy had built the Cadet as Earle MacPherson originally wanted, it would have had independent suspension via struts — like a modern Camry — in 1947. The only reason it didn’t happen was (unsurprisingly) cost.

  6. What a great piece of history. As a long time, if somewhat casual, fan of the Corvair Id like to say thanks for the well researched and written article.

  7. Lancia used semi trailing arms on the Aurelia when it was introduced in 1950. They switched to a DeDion set up in ’54.

  8. Great retrospective. However, you missed one serious design issue on Corvairs. The heater. On both early and late models, the direct heater (which uses air that has circulated past the heated engine and exhaust manifold) is dangerous enough that the largest Corvair aftermarket vendor sells a CO2 monitor/warning alarm. Clearly an engineering concession to cost, this heater does not employ a heat exchanger which would keep potentially poisoned air OUT of the heating system. Nearly every engine blow-by seal can add fumes to the passenger compartment. More insidiously, however, is the possible introduction of combustion exhaust by way of exhaust packing failures and/or head gasket problems.
    While I think these cars are terrific, I cannot get past the absolute miserable design of the heating system.

    1. Both of my Corvairs (a ’61 van and a ’62 sedan) have a stock gasoline heater in front of the passenger firewall. The combustion happens outside the cabin and is exhausted under the vehicle. No fumes, no vapors. It heats a lot faster, too.

    2. So don’t heat exchangers exist NOW, that could be placed on all extant corvairs via recall, so NO possibility of monoxide-poisoning could occur?

  9. I owned a 66 Monza with the 110 and a Powerglide during the 1990’s. It was without a doubt the best driving and riding car I have ever owned and I regret selling it. I would like to buy another one, but this time I think I’ll get one with the 140 engine and maybe a manual transmission, though the Powerglide is not a bad transmission.

  10. Not all Corvairs used engine air for heat.

    My father and I both owned 1960 model Corvairs. In each vehicle, cabin heat was supplied by a Stewart Warner gasoline fueled heater mounted in the front trunk (even less room for luggage!). These were factory equipment items as evidenced by the their coverage in the official Corvair shop manual.

    My 1960 Corvair, my first car, lasted all of 2 months until I totalled it in a rollover. Without the benefit of seatbelts, I walked away with a sore arm from hitting the inside of the driver door.

    I later acquired a 1961 Corvair Loadside pickup which was built without a heater (of any kind). However, it was obvious provision had been made in the design for a gasoline heater to be mounted below the dash on the passenger side of the cab. I believe later models of the truck and van utilized engine heat via ducting.

    Subsequently, I owned a 1961 model Corvair with a 4 speed manual tranmission, a Corvair passenger van and a 1965 model convertible with the four carb 140 HP engine. All of these vehicles were enjoyable rides.

    Thanks for an informative and entertaining article!

  11. Nice article on one of my favorite cars! One small correction, the Astro 1 engine mounted two, three throat carburetors, one for each bank of the flat six. It was proposed in one of the Corvair histories that GM used in-house carb castings with Weber 40IDA3C internals. That carb was used on some Porsche 911s, the 914-6, and early Ferrari Berlinetta Boxers, I believe.

    1. Thanks for the correction — I’ve amended the text.

  12. [quote=Stuart Linderman]While I think these cars are terrific, I cannot get past the absolute miserable design of the heating system. [/quote]

    If the CO2 alarm goes off, your only recourse is to open the windows until you can fix the leak, right? Doesn’t make me want to run out and get a Corvair!

    At some point [i]Consumer Reports[/i] wrote about a man who had reached an out-of-court settlement with GM. He’d driven a Corvair van for some years in his business and suffered serious long-term harm from exhaust fumes. Part of the agreement was that he couldn’t comment publicly, so [i]Consumer Reports[/i] had nothing to report beyond that.

    [i]Road & Track[/i] had an article in the late 1960s, when the Corvair was still in production, about what the Corvair should have been, and still could have been if GM had had the corporate desire. This is from memory and therefore sketchy, but they said the Corvair had always been sloppily built, and burned and leaked oil. IIRC, they also suggested a carburetor setup and gave an estimate of the power it would have yielded–less than the turbo’s notional 180 hp, but a realistic rating, unlike the turbo’s.

    Some years ago I was flipping through a book for Corvair owners on the news stand, and it made a couple of points that interested me:

    1) The mule-drive fan belt was narrower than most fan belts. Owners were cautioned that if they put a generic fan belt on a Corvair, it would ride too high in the grooves and be thrown.

    2) In its lifetime a Corvair would leak or burn ~$120 worth of oil. There was no repair for $120 that would put a stop to it, so owners should top up the oil and take it philosophically. This was written before the advent of Viton seals.

    1. In fairness, a great many older cars leak and/or burn substantial amounts of oil, even when they’re in good mechanical health. Most of the Corvair owners to whom I’ve spoken acknowledge that the engine does leak oil, but as mechanical foibles go, it’s hardly egregious. A friend of mine, who is presently restoring a second-generation Corvair, notes philosophically that the oil seepage of his car did at least keep the engine trim from rusting…

  13. [quote=Administrator]The de Dion, which was popular for racing, but used only sporadically on production cars, was not really an independent suspension; it mounted the differential on the frame or monocoque, so it didn’t contribute to unsprung weight, but connected the wheels with a sort of telescoping beam axle.[/quote]

    In the early 1970s an issue of [i]Road & Track[/i] had a pull-out suspension supplement, bylined by then engineering editor Ron Wakefield, covering the various kinds of suspensions.

    According to the supplement, de Dion suspensions traditionally had a beam axle, but not a telescoping one. The half-shafts would be splined so the rear wheels maintained a constant track as the suspension worked. Wakefield went on to say that the splines (at least in years past) tended to bind, hence the telescoping axle (and no splines) on the Rover P6. Rover accepted the changing track, and some tire scrub, as the tradeoff. Wakefield also said that modern splines didn’t have the binding problem.

    The Alfetta of the 1970s was so named because its namesake racer had a de Dion suspension.

    1. That’s a good point — thanks for the clarification. What I was trying to get at was simply that the de Dion tube has to have some provision for limiting track changes.

  14. I read Unsafe At Any Speed many years ago, and the details that stay with me today are: 1) many people were hurt or killed when their ’60-63 Corvairs rolled over, 2) in some of these accidents, the outside rear tire would be pushed off the rim (“breaking the bead”), emptying it of air, and 3) sometimes the outside rear rim would [b]gouge[/b] the pavement. Apparently the outside rear half-shaft would briefly become vertical during a rollover! It all sounded much more dramatic than your very technical description. :-)

    stuart

    1. I have no statistics on Corvair crashes, so I don’t know if rollover fatalities were significantly more common than on other cars. (I don’t recall Nader providing such statistics; the incident you’re referring to was his description of a specific nonfatal crash in October 1960, in which a woman lost her arm when her car flipped over.)

      While the description of tire gouges in the pavement are dramatic, I don’t know that they’re revealing. In any situation where the tread separates from the rim while the vehicle is in motion, the likelihood of damage to the pavement, the wheel, or both is quite high — you have a relatively thin section of steel or aluminum alloy, backed by at least a ton and a quarter of weight and a great deal of kinetic energy. Furthermore, passenger car tires of that vintage were generally much less robust than modern tires, and were often operating near or above their maximum loads. It was possible for an average car or station wagon to suffer a blowout or tread separation simply from overloading/overheating, without any specific severe maneuver. If a 4,500-pound wagon suffered a tread separation at 70 mph, I would be surprised if its wheel [i]didn’t[/i] gouge the pavement.

      As for the half-shaft, it was connected to the differential by a universal joint, which gave it a fairly broad arc of motion. If the car were rolled or flipped by whatever means, it would seem likely that at some point in that motion, the half-shaft would be at least briefly vertical, simply as a result of its geometry.

      I’m not implying that the accident(s) described did not occur, or that wheel tuck-under could not cause the tire to lose pressure. However, even in that event, details like the gouged pavement or vertical half-shaft would be [i]results[/i] of a rollover, rather than the cause, and neither was necessarily specific to the Corvair.

      1. My 3rd Corvair was a ’65 Corsa convertable w/ the quad-carb 140hp engine and 4 speed manual. I got it seriously sideways at high speed yanking the wheel left to avoid an accident on a 2 lane highway. The heavy rear-engine swung us around into oncoming traffic with me frantically spinning the *slow* steering right-right-right. It eventually righted and we slid onto the left shoulder, more or less straight. As the dust was settling, we noted that BOTH wheel covers from the right side had popped off the rims and were rolling on down the road on their own. I can personally vouch for the suspension improvements in the later Corvairs.

        Side notes:

        The carburetor float axles were aligned with the longitudinal axis of the car. This meant that in hard cornering the floats would slosh closed or flood the engine. Several contemporary hot-rodding books address this problem including adding balance springs to the floats or rotating the carbs 90deg. I did a little autocrossing in the Corsa and never did get happy with that.

        The oil leak/heater thing could be solved with new exhaust gaskets and slathering the pre-viton pushrod tube ‘O’ rings with thick, aluminum based anti-seize compound. It carried away some heat so it couldn’t cook the rubber. Never had a problem with the heater after that.

        When I sold the 1st Corvair (a ’64 Monza Spyder, turbo) I took the prospective buyer across the San Mateo Bridge (SF Bay Area), hitting 130mph before the curved riser on the San Mateo end. It was still winding up. He bought it on the spot.

  15. These come to mind for me:

    NSU 1000
    Hillman Imp
    Karmann-Ghia Type 34

    What were the other ones you were thinking of?

    1. Mazda Luce coupe, almost a 1:1 copy.

    2. …Meaning cars whose styling was clearly influenced by the Corvair? I would add:

      ZAZ Zaporozhets 966/968
      Fiat 1300/1500
      Panhard 24
      BMW 2000 CS

      Few Amercian cars had more impact on automotive styling in the 60s. What other car influenced the Soviets, the French, the Italians, the Brits, the Japanese and the Germans?

      1. The Luce Rotary Coupe was styled by Bertone rather than Mazda’s in-house, but if I dug around I’m sure I could find other Japanese cars that show a Corvair influence.

  16. I enjoy the thoroughness of your article and the facts.
    I own a 1960 in Bolivia that I have completely rebuilt, and I drive it daily through the mountains enjoying how well it handles.

    1. The Mountains of Bolivia? Wow. A 1960 Corvair would not be my car of choice to tackle the Camino de la Muerte…

  17. The National Automobile Museum in Reno, NV also has a copper-cooled four on display. I think they indicate it is one of only about two surviving in the wild.

  18. really enjoying your various topics you’ve written on.
    re- 1960 corvair 4 speeds. engineering did build and test 4 speed transmissions for 1960 corvairs, but it never became a regular production option for that model year, despite a published road test of a 4 speed car in one of the major enthusiast magazines, and many rumors in the press noting it ‘would be available soon’. production of the transmission was close enough that it is included in the 1960 assembly manuals, but is further noted as ‘option cancelled’, and chevrolet zone offices sent letters to dealers explaining "chevrolet central office has advised us that the 4 speed manual transmission for the corvair will not become available for the 1960 model year.’
    the 4 speed did go into regular production for the 1961 model year, now with cast iron case and 16 spline mainshaft that was used through the rest of corvair production.
    in the early 60’s, corvairs had a higher percentage of 4 speed installations than any other american car short of the corvette.

    The corvair society museum in Ypsilanti (part of the heritage trust museum) has a ’60 model prototype 4 speed on display.
    regards
    larry claypool
    technical editor
    corvair society of america

    1. Thanks for the information. I hadn’t assumed the four-speed was available until the start of the ’61 model year in the fall of 1960, but the way the article text was worded was misleading, so I edited it a bit.

  19. The swing axle was sometimes used in Europe and Britain as a cheap way of providing independent rear suspension but like any cost cutting option it had its drawbacks and was controversial over here as well as in America. My personal experience was with the Triumph Herald and Vitesse which handled very well up to a point but if that limit was exceeded the cars would become quite a handful to an experienced driver-the rear wheels would tuck themselves under and the oversteer was alarming and if you applied the brakes when cornering you were really asking for trouble.The Corvair also had the disadantage of the rear engine layout on top of the crude rear suspension.To a nation of people raised on conventional but safe handling cars the rear engined Chevy and its original cheap cost cutting suspension deserves its bad handling reputation.

  20. Corvair- what memories! My buddy’s parents owned a Corvair and a Lotus Elan (talk about contrast!)- mainly, I remember how, back in the day: 1. the motor of the Corvair was popular as a transplant into VW vans and 2. the motor leaked oil like a sieve, even when compared to contemporary vehicles. My brother has an Austin Healey: no oil leaks whatsover- imagine a BRITISH car engine making a US car motor look bad!

  21. I have one and luv it.

    Its a fun car to drive and always get complements.

  22. FYI: A correction MUST be made about the Copper Cooled Chevy, there is a 1923 Copper Cooler body and cutaway motor (separate) in the Buick Gallery In Flint MI, USA. Please correct this soon.

    1. Fair enough. There are actually several survivors, although not many and not always in one piece. (There’s also an engine in the Heritage Center.)

      1. Thanks for the acknowledgement. If anyone at Flint’s Buick Gallery or any other owner (owner or institution) of a copper cooler (motor or car) reads this, I think they would probably be grateful for their acknowledgement (technically).

  23. Excellent article! I’ve known the story for many years yet your piece added texture and background I haven’t seen before. One comment: You mention that ’65 Greenbriers were “left over” ’64s. I don’t think this is the case there are more than a few differences in the engine and trim that indicate continued development and of course production dates fall in the ’65 model year. In my understanding, the commercial version of the ChevyVan replacement was ready for the ’64 model year but the passenger version, the SportVan was not. Chevrolet decided to keep the Greenbriar (but not the Corvan or Rampside) in production until the SportVan was ready later in the model year.

    1. You’re likely correct on the ’65s. There was also a surprising number of year-to-year engineering changes on the late Corvair passenger cars, particularly considering that development had theoretically ceased. One would assume that after ’65, the cars would all be pretty much the same except for safety and emissions modifications, but in talking to people restoring the second-gen Corvairs, that’s not the case (although a lot of those changes are not reflected in the shop manual!).

  24. Excellent article! Two notes:

    The last engine pictured in the article does not in fact have air conditioning. Air conditioned Corvairs had the usual GM 6-cylinder swashplate A/C compressor mounted in the position of the alternator. The alternator was swapped to the opposite side, replacing the idler pulley. Interesting trivia: the compressor was built to run in the opposite direction for the Corvair, and such units were painted green rather than black to distinguish them. Speaking of which, a big advantage of the Gen II Corvair over the ’65-66 Mustang was the fact that the Corvair A/C was completely integrated into the instrument panel, rather than being a hang-on unit. Unfortunately it was not possible to get A/C on the turbocharged Corsa.

    One bit of forgotten history you may want to add: The 1966 Corvair was the first production car ever fitted with a front chin spoiler. I wrote about it here:

    autouniversum.wordpress.com/ 2013/11/21/ advent-of-the-downforce-inducing-aerodynamic-appendage/

    The wind-wander problem associated with rear-engine cars of the period was not actually a direct result of the rear engine location; all cars of the era had huge amounts of aerodynamic lift at the front. However, having a big heavy engine up in the nose largely mitigated the problem. The 1966 Corvair solved the issue by addressing the root cause.

  25. All Corvair generators and alternators were mounted on the driver’s side of the engine. The a/c compressors were always mounted on the passenger’s side.

    1. The a/c compressors were driven by a belt directly off of the crank pulley.

  26. I had three Corvairs when I was young: a ’62 Spider (turbocharged) that I bought for a song because its turbo had ceased, a ’65 Powerglide sedan that was an acceptable car, and a ’66 Corsa convertible (4 carb) on which I installed Michelin radials, short steering arms (for fast steering), and copper sinterred brake linings. It was like a poor man’s Porsche. The car was very reliable and great fun to drive. I almost bought a similar one on e-bay recently (I think the owner wanted about $12 grand for it) but decided on a TR8 instead. The ’66 had a number of detailed improvements over the ’65.

    1. Almost every year of the Corvair’s run had some significant detail improvements, which can be a little confounding.

  27. You did not mention that Ralph Nader finally got NHTSA to conduct a defect investigation into the first generation Corvair handling and stability. The initial finding, based on testing a fully loaded Corvair found no problem. In fact, according to its first report, the NHTSA engineers could not get the car to roll over. Only later did one of the engineers test a lightly loaded Corvair which immediately rolled. The second report discussed the fact that the primary safety problem with the Corvair was that it understeered up to a lateral acceleration of about 0.3 g, but then changed to violent oversteer in less than 3/4 second — faster than most driver’s reaction time. With the oversteer, the Corvair slid so that it was sideways to its direction of travel, and would easily roll over as its outboard rear wheel tucked under. Unfortunately, there were no good crash statistics at the time that would have documented the number of rollovers that resulted. There is extensive documentation of this story in a Senate report published around 1974.

    1. The NHTSA investigation is indeed mentioned in the article — look at the paragraph below the photo of Ed Cole. I have not read the subsequent Senate report, though, which would be worth a look. Do you have any more details on it?

  28. Along with the having the anti-roll bar as standard from the outset, would the Chevrolet Corvair have benefited from the all-alloy BOP 215 V8 to better equip it against the Ford Mustang V8s (similar to the rear-engined V8s in Tatras)?

    1. I’m going to say probably not. First, while people have certainly installed V-8s (including the Buick 215), the Corvair wasn’t designed for a V-8 or a water-cooled engine and installing one is a pretty elaborate exercise. (The Crown Corvair, q.v., is a fun toy, but not long on practicality.) A production V-8 Corvair would have been cumbersome (and thus expensive) to build and would probably have sacrificed a lot of mechanical commonality with the standard car. On top of that, the aluminum 215 was itself wasn’t cheap to build and Chevrolet would have had to buy the engines from Buick at a markup, making it even more expensive. (That’s one reason Pontiac was so reluctant to use the aluminum 215.)

      If you put all that together, it would have been hard for Chevrolet to keep the price down, which would have made the car a tough sell against the Mustang, whose mechanical stuff was all pretty much off-the-shelf. Keep in mind that this is sixties GM, which considered anything under 100,000 units a year to be small beer.

  29. You say that the Doyle Dane Bernbach ad campaign for Volkswagen was a factor in green-lighting the Corvair project in September 1957 but Doyle Dane Bernbach did not get the Volkswagen account until 1959.

    1. Eek, thanks for the correction! I’ve amended the text and am kicking myself for not having caught that before.

  30. SECOND COMMENT: The Corvair 4-speed manual transmission would not take a lot of abuse. Pontiac used a similar transmission for their 4-cylinder Tempest, however they wouldn’t install it behind the aluminum 215″ V-8, nor the 326″ which was optional in 1963. V-8 Tempests had the choice of 3-speed manual or Tempestorque automatic (which was similar to the ‘Vair Powerglide).

    1. The four-speed was originally a low-cost adaptation of the original three-speed, so that’s not surprising. My understanding was that even the Tempest three-speed, which I assume was beefed up a bit for 1963, was marginal with the 326. I recall that Car Life broke a gear of theirs, which if I’m remembering correctly was behind a modestly hopped-up Royal Bobcat 326. Looking at the comparative torque figures, it seems like it was just more than the Corvair transmission was ever designed to take.

      1. I had a friend with a 1964 Corvair (110-hp?) which was supercharged with a Paxton blower, 4-speed transmission and 3.55 Positraction gears. Also, the ‘Vair was fitted with Michelin X steel-belted radial tires. This guy swore it could lift the front wheels off the pavement on acceleration.

        The gauntlet was tossed (and I believe money wagered). Our proud Corvair owner nailed the throttle and dumped the clutch…

        Next trip was on the back of a tow-truck to the local Chevrolet dealer, being the clutch, pressure-plate, two synchros in the tranny, ring & pinion and Positraction unit were damaged. The service department put everything back together (customer pay).

        The fool tried the stunt a second time, with similar results; and I don’t believe the front wheels left the ground THAT time either.

        (Methinks the Chevy service department named him a star customer. And I’m not aware of a third attempt.

        1. That’s very funny. You’d think after the first time, he would have learned an important lesson, like considering, “Even if I win this bet, will it be enough to pay for rebuilding the entire drivetrain again?”

          1. The guy was a bit on the strange side. Had some money behind him. Thought the Corvair was: “…the most superior car on the road.” (Then-1966) everyone is entitled to their own opinions. I guess he never drove a Corsa.

            They were interesting cars and I “wrenched” on a few as a mechanic; but no desire to own one. Aside from tricky handling (60-64) the steering box was right behind the front bumper and a serious crash would displace the steering mechanism and wheel up and back 18″. Not an indictment on the Corvair as several other makes also placed the box and un-collapse able steering column in the same location.

  31. A major Corvette enthusiast related Chevrolet’s experiments with a mid-engine platform. I believe it had a 327 hooked to an early Pontiac Tempest transaxle. They used the automatic version knowing the 4-speed wouldn’t handle the torque of a 327.

    1. That would make sense, since the 327 had nearly three times the torque of the Corvair engine and over 50% more than the slant-four Tempest, which is a lot to ask of an unmodified or even lightly modified manual transaxle. I assume TempesTorque was more forgiving in that regard, since the direct clutch (which seems like the most obvious failure point) could be beefed up without an extensive transmission makeover. It’s conceivable that TempesTorque also had a higher torque capacity to begin with — I’ve never seen any factory figures for the transaxles — since Pontiac didn’t offer most of the hotter engine options with the three-speed.

  32. ANOTHER FUNNY ‘VAIR STORY: I had a customer with a really cherry ’64 Monza Convertible. Even though it was 10-years-old it was in “like new” condition.

    One day he called me up complaining that it was almost impossible to start in the mornings. We arranged for it to sit overnight and I went to work. Long story short, I found a bad electrical connection (they lived near the ocean) and there was no 12-volt “kick” to the coil in the start mode. I finished the tune-up and it instantly started at the first turn of the key.

    A couple of weeks later and I happened to run into the owner, with the standard question; “How is your Corvair running?”

    Owner replied that I f*cked up… Being I prided myself on quality work, what the???

    Seems right after I worked on it it was stolen right out of his garage in the dead of night. It was never recovered. (Methinks it was cut up and made into a dune buggy:-(

  33. CORVAIR OIL LEAKS: I worked in the service department of a large Chevrolet dealer in the late 1960’s. Common places of Corvair oil leaks were 1) push rod tube seals. (Later cured by improved sealing materials). 2) Valve covers. (Cured in ’65 with wider retaining brackets instead of washers and proper torquing.) 3) Oil filler cap and sealing surface on the filler tube becoming distorted by the constant pressure of engine oil whipped up by the crankshaft. 4) Oil pressure switch failure. (This, however, is not limited to Corvairs as many domestics of the era used the same design).

    With many years and thousands of miles, heat and vibration can cause many other opportunities for leakage today.

    I also remember complaints of burned valves (the Spyder used upgraded (stellite) valves.) Also hydraulic lifter issues. Part of the lifter issues may be due to the oil available then. Today’s lubricants, for the most part, are superior. 93 octane (if available) and a lead additive may help with the valve issues.

    I posted this previously but it may have been lost in cyberspace. My apologies on repeating myself.

  34. “claimed that Chevrolet engineer Frank Winchell actually flipped a Corvair prototype”

    Flipping is end over end and very difficult to accomplish, rolling is a sideways motion.

    Are you sure you meant flip and not roll?

    1. DeLorean described it as a flip. Lacking more details, or photos/videos, of the alleged incident, I’m loath to second-guess it further. However, the idea that “flipping” can only refer to one specific direction of motion strikes me as unhelpfully and unnecessarily prescriptive. I can envision a variety of scenarios that the average person (and I) would likely describe as flipping sideways or flipping diagonally and that are clearly distinct from a roll. Short of some kind of formal engineering paper or research study where you’re defining very specific categories for some statistical or analytic purpose, that seems a perfectly reasonable colloquial description.

  35. When I was 16 years old I owned a 4 speed 63 Monza 110 HP coupe in 66 that was my first car. It cost about $850 dollard used with less that 35,000 miles on it. I loved it and drove it every where in the Tampa bay area. I would load all my buddies in it and we would chip in and drive to Clearwater beach and all over the Gulf beaches for $3 dollars worth of gas from the north Tampa Area near Bush gardens. We would road race our buddies around the University of South Florida’s roads which were not built up and sparsely populated back in the mid 60’s. It was defiantly my Poor Mans Porsche. I loved to drive it fast and broad slide it on the many dirt roads that still existed then and even through the many Orange Groves in the area. There was this dirt oval of sorts around this pond in the woods near the USF area that we called the Duck Pond that people would bring their old stock cars, dune buggies and jeeps out to race each other. It was wild, the police never bothered us and I cant believe no one ever got hurt to my knowledge. I let one of my close friends drive my prized Corvair around the Duck Pond oval going faster and faster until he went the wrong way around this dead tree that was just past one corner that had a ditch across the path that bottomed the suspension and shoved the engine back into the cross member behind the crank pully snapping off the oil filter housing and dumping oil all over the engine and the dirt track that we were racing on. so now I am broke down out in the middle of these woods with no oil in my engine and how am I going to have to tell my dad that this happened ? I got towed home by one of my friends who was also there and the next day I bought a new oil filter housing piece from Dempsey Chevrolet in Tampa for about $4 dollars and changed it out.
    I kept it until 1969 when I traded it in for a brand new $2500 dollar Opel Cadet Rallye because the Corvair had a screwed up starter gear on the engine that ate up the gear on the starter in no time that required pulling the engine and replacing the clutch and pressure plate that the starter ring gear was attached to. I had to push start that car or park it on inclines and let it roll backward and start it in reverse or roll it going forward. I had few tools then and my mom hated me working on my car in our car port where we lived so I traded it for the Opel. It cost me $65 dollars a month to finance back in 1969. Some day I will write about the 66 4 door power glide hard top that was given to me about 20 years later when I was doing car repairs that I moved away and left behind at my old place because I had no help and way to move it to my new shop after having moved about a dozen other cars of mine that did not drive but ran that I had some help with moving. I still miss both of them more than about any other cars that I have ever owned.

  36. What is the story behind Peter Brock’s Isetta (later Beetle) challenging rear-engined 2-seater 1956 GM Cadet concept and the potential role it played in the development of the Chevrolet Corvair?

    The 1956 Cadet concept featured a 67-inch wheelbase, was to be powered by theoretical an air-cooled 2-cylinder (not sure it is was an Inline or Boxer layout) and priced at $1000, being similar to the BMW 700 yet slightly smaller with a lengthened (possibly 4-seater?) version being considered at one point as a challenger for the VW Beetle and Renault Dauphine.

    GM rejected the project, only to later resurrect it with the project eventually evolving into the Corvair.

    Also where can I find out more about the Chrysler A-106 project?

    1. According to the account on Brock’s company website, the rear-engine Cadet was a styling exercise Brock did with encouragement from Harley Earl (whose name the BRE website curiously misspells). While a full-size model was built — there’s a photo of Brock sitting in it — I don’t know that it had any powertrain in other than a hypothetical sense. Since the project came from Styling (and I think one of the corporate Advanced studios at that), I doubt it.

      I think its connection to the Corvair was probably close to nil. Chevrolet’s advanced engineering group was already pursuing the air-cooled/rear-engine layout, and had been even when Styling first hired Brock; it was a pet project of Ed Cole’s. The Cadet concept doesn’t seem like anything Chevrolet would have seriously considered building in the mid-fifties, not least because the $1,000 price point was even less realistic than it had been for MacPherson’s Cadet project a decade earlier. The mini-Cadet was a cute concept, but I’m pretty sure that’s all it was.

      An important thing to remember about GM in that era is that it was enormous and had lots of largely autonomous divisions and departments that were really quite separate in an organizational and operational sense. Many of them were involved in various sorts of experimental projects, many of which were far removed from any immediate likelihood of production and which were in many cases separate from one another. Of course, some ideas and concepts did pass interdivisionally (the 1963 Buick Riviera is a good example), but many did not, and I think in a lot of cases, the left hand didn’t talk to the right. However, looking at it from outside and in retrospect, it’s easy to presume connections or cohesion that didn’t necessarily exist.

      1. I see. The mini-Cadet concept of 1956 immediately brought to mind the notion by some of GM at one point looking at a family of downscaled rear-engined versions of the Corvair concept, based on how the Corvair’s Flat-Six engine either was from the outset or became a modular design capable of spawning a Flat-Twin or Flat-Four at one end to a Flat-Ten or Flat-Twelve at the other end.

        Would a version of the small 1956 Cadet concept have been more suitable had it been produced in the UK or Germany, especially since Opel were developing a 700cc version of what became the Opel OHV engine?

        The closest equivalent that GM in Europe seemed to have looked at is the front-engined FWD Vauxhall XP-714 project after the Mini appeared.

        Do any images exist for the Chrysler A-106 prototype?

        1. Had the rear-engine Cadet been developed by or for Vauxhall or Opel, it might have had marginally more production potential, but it appears to just been a Styling experiment that Harley Earl happened to think was neat. (I’m not entirely clear what studio Brock was in during his brief stint at GM Styling, but I gather it was one of the experimental studios, which would make sense given his very young age and lack of experience or seniority. Production-track designs were something I think you had to sort of work up to doing.)

          The Corvair was not a corporate project, it was a Chevrolet project — a significant distinction in those days. Had it been the brainchild of one of the corporate Engineering Staff groups, they might have tried to make it a modular engine design, if only to see if there were patents they could secure in that realm. As far as I know, making a modular engine wasn’t part of the brief for what became the Corvair. Robert Benzinger, who did a lot of the engine development work, said that they settled on the flat-six layout pretty early on and had quite a struggle getting that to work. One very significant point Benzinger makes in that regard is that with an air-cooled automotive engine, the differences between an H-4 and an H-6, and presumably an H-6 and multi-cylinder variations, are not trivial and are a lot more involved than just adding or removing cylinders from a liquid-cooled inline engine.

          On the Chrysler A-106, I’ve been pondering that. I don’t specifically recall if I’ve seen any published photos of the earlier iterations. There may be some in the Collectible Automobile article on the early Valiant and thus in the HowStuffWorks.com article (many of their automotive articles are repackagings of earlier CA pieces).

          1. Managed to find some info on the Chrysler apparently it was to feature a Flat-4 engine of as yet unknown displacement and power.

            There was also the two Chrysler Cadet projects, the first developed in parallel to A-106 and the second during the early 50s though am not sure what engines were to feature in both projects.

          2. Both Ford and Chrysler wrestled with the question of whether to use a four or a six, eventually settling on the six. (Chevrolet apparently did as well, although it appears they settled on the air-cooled six for the Corvair very early on.) I’m sure from the standpoint of everywhere else in the world, it looked like complete madness: “We must economize! Absolutely NO more than 3 liters displacement!” It was not without reason — fuel wasn’t that expensive, only a few states used taxable horsepower-based registration fees, and Detroit assumed that Americans felt the same way about using the gearbox as they felt about visiting the dentist — but it does provide some hints about why U.S. automakers later struggled so badly coming up with decent C-segment cars.

  37. I can vouch for the improved ’64 rear suspension anti-camber spring. As a fearless (stupid) 17 year old I loved to hear the rear wheels (worn bias plies) squeal around long bends. Once…and only once, they did break loose and I found myself doing a 180, smashing flat against the curb and the passenger side rear tire/wheel smashing square on a steel sewer drain. The impact separated the tire from the rim but the spring/shock kept things from caving in and possibly tipping the car. The car landed (on all 4 wheels) up and over the curb, on the grass. All my graduation money went to fixing the car but I did learn something about the car’s limits.

  38. i have a 61 monza coupe here in australia,one of a dozen orso imported into australia for evaluation by g.m.holden from 1960 to 64.

  39. While rear-engined XP-892 was apparently designed around the 4-cylinder Chevrolet 153 engine, what engine would it have likely used had it been signed off for production?

    Seems any 6-cylinder let alone a flat-6 was completely out of the question for XP-892, which leaves either the Chevrolet 2300 (along with possible Cosworth Twin-Cam) or the stillborn Vega OHC L-10 (which was love to see specs of) and the 150 hp GM Rotary engines.

    1. I have no idea. The XP-892 was a corporate advanced project, not a divisional one, so while Dick Langworth describes the design as a production-ready one, I think that just means it was not a wild show car concept never intended for human occupation. My assumption is that it was mostly just a pet project for Ed Cole.

      1. Understand. Not sold on the Rotary (as others suggest it was intended for XP-892) though quite like the idea of XP-892 using the Chevrolet 2300 or Vega OHC L-10, especially if either utilized turbocharging.

        Would have been interesting though if GM were able to come to a deal with Rover / BL for supply or some of the intellectual rights of the all-alloy Rover V8 (e.g. permitted to revive the slightly different 215 Oldsmobile V8), if not able to buy back the Rover V8. However doubt it would have been able to fit into XP-892.

        Is it known whether XP-892 was a 2-seater or a 2+2?

        1. I’m not at all sure that GM would have needed to buy back the rights to the aluminum V-8 if they’d wanted to start using that engine again. They continued using direct derivatives of it, so barring some specific evidence to the contrary, I assume Rover bought a manufacturing license rather than sole rights. The reason GM never returned to it was that Buick, Oldsmobile, and Pontiac decided it was too expensive and troublesome to be worth the bother; John Thornley said the GM execs he spoke with were always amazed that British Leyland were still interested in what GM considered a cast-off dead end.

          In any event, the XP-892 was definitely a 2+2 and is explicitly identified as such in some of the design studies.

  40. Page three reads “The half-shafts, now pivoted at both ends, acted as lower control arms while two lateral links acted as upper arms.”

    It should be “The half-shafts, now pivoted at both ends, acted as upper control arms while two lateral links acted as lower arms.”

    1. Whoops, you’re absolutely right. (I don’t know how I’ve kept missing that.) I’ve amended the text — thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *

Commenting signifies your acceptance of our Comment Policy and the Privacy Policy — please read them first. You must be at least 18 to comment. PLEASE DON'T POST COPYRIGHTED CONTENT YOU AREN'T AUTHORIZED TO USE!

Except as otherwise noted, all text and images are copyright © Aaron Severson dba Ate Up With Motor. (Terms of Use – Reprint/Reuse Policy – Privacy Policy) Trade names, trademarks, and service marks are the property of their respective owners and are used here for purposes of identification, description, and/or commentary.