Turbos for the Turnpike: The Turbocharged Oldsmobile F-85 Jetfire

Summary

In 1962 and 1963, Oldsmobile offered a short-lived turbocharged version of the compact F-85. Called F-85 Jetfire, it used a high-compression aluminum V-8 engine with a complex, troublesome fluid injection system. Chevrolet also developed a simpler turbocharger installation for the air-cooled flat-six engine of the rear-engined Corvair. The Corvair offered turbocharged engines from 1962 to 1966.

Jetfire Revisited

With turbocharging now so common, it’s tempting to look at the Oldsmobile Jetfire and turbocharged Corvair as cars ahead of their time, and ask whether their early demise was a mistake.

In the short term, the turbocharged Corvair was probably the more prescient of the two, foreshadowing the host of modestly priced turbocharged four- and six-cylinder coupes that appeared in the eighties, many of which were almost as crude and just as peaky. That it didn’t survive that long was due more to the failure of the second-generation Corvair to effectively compete with the Mustang than with the merits of the turbocharged engine itself. Had the Corvair survived into the seventies, it’s not unlikely that a turbocharged version would have resurfaced eventually, even if it had been dropped for a time in the late sixties.

1965 Chevrolet Corvair Corsa two-door hardtop turbo (blue) rear 3q by Steve Glover (CC BY 2.0)

The second-generation (1965–1969) Chevrolet Corvair had a lovely shape and a vastly improved fully independent suspension, but neither did it much good against the new Ford Mustang, which quickly became the car to beat in the sporty compact market the Corvair Monza had previously dominated (and had to some extent created). Turbocharged Corsa hardtops like this one were rare. (Photo: “Chevrolet Corvair Corsa Turbo (1965)” by Steve Glover, which is licensed under a Creative Commons Attribution 2.0 Generic (CC BY 2.0) license)

Evaluating the F-85 Jetfire in this light is more difficult. In concept, the Jetfire wasn’t far removed from modern turbocharged cars — not high-performance models, but family cars and luxury sedans using turbochargers to make smaller engines do the work of larger ones. However, we don’t believe it would have ever really succeeded in that role. Its complex fluid injection system would likely have been an insuperable handicap even if it had worked flawlessly, and the obvious alternatives would either have been too costly or would have sacrificed too much performance for Oldsmobile to consider them worthwhile.

Was Oldsmobile wrong to drop the turbocharged engine rather than continuing to develop it? Perhaps, but in the early sixties, the factors have since driven the move to downsized turbocharged engines had only begun to emerge. California imposed the first automotive emissions requirements (for the recirculation of crankcase vapor) beginning with the 1963 model year, subsequently adding limits for hydrocarbon and carbon monoxide emissions that took effect three years after that, but the first federal emissions standards didn’t take effect until 1968, and those early standards (measured in parts per million or percentage of exhaust volume) didn’t necessarily favor smaller engines. Concern about carbon dioxide emissions did not enter the public consciousness until many years later, and as for fuel economy, even the most tight-fisted American consumers of this era had rather generous ideas of what constituted “good gas mileage.” Moreover, U.S. buyers, unlike their counterparts in many other markets, didn’t have (and still don’t have) any overriding financial reason to prefer smaller-displacement engines. In other words, Oldsmobile had no obvious reason to continue refining its turbocharger technology past the 1963 model year. The division’s normally aspirated cast iron V-8s better suited Oldsmobile’s contemporary priorities in nearly every respect, including fuel economy.

1962 Oldsmobile F-85 convertible (blue) with Jetfire badge by Greg Gjerdingen (CC BY 2.0)

While this looks to be an authentic Jetfire badge (or at least a good replica), the blue car whose fender it adorns is an F-85 convertible; the F-85 Jetfire was never offered as a convertible. (Photo: “DSC00143” by Greg Gjerdingen, which is licensed under a Creative Commons Attribution 2.0 Generic (CC BY 2.0) license)

Although Oldsmobile didn’t try to revive the turbocharged Jetfire in the seventies, instead betting on its ill-fated diesel V-8 to boost its fleet average fuel economy, the turbocharged Buick V-6 could reasonably be regarded as a Jetfire successor. If it wasn’t exactly a direct descendant, the turbo V-6 did clearly take some worthwhile lessons from the earlier Oldsmobile and Chevrolet turbos, a rare example (like the V-6 itself) of GM promptly reviving a previously discarded innovation as soon as it had a stronger use case.

Buick's Exclusive Turbocharged V-6 Engine display, 1978 - B3847-R42-0001 (General Motors LLC / GMMA 26326)

The 3.8 Turbo V-6 did not remain a Buick exclusive throughout its 11-year production life, finding its way into other makes and models like the Chevrolet Monte Carlo and Pontiac Firebird Trans Am, although it never approached the ubiquity of the normally aspirated Buick V-6. (Photo: General Motors LLC)

Thus, while the Jetfire was a failure in its own time and on its own terms — a technological novelty item, simultaneously over-elaborate and undercooked, and too expensive relative to its benefits — it was not an entirely Pyrrhic effort. Rather, it was an early, imperfect, slightly off-kilter rough draft of a more practical (if no less complicated) future.

FIN

AUTHOR’S NOTES

You can purchase our author’s notes for this article, with a 6,700-word section-by-section discussion of specific points of interest and sources of information, from the Ate Up With Motor Patreon shop: Turbos for the Turnpike (Oldsmobile F-85 Jetfire) Author’s Notes

(This is also a great way to support Ate Up With Motor!)

NOTES ON SOURCES

Our sources for this article included ABB, “ABB to spin off its Accelleron turbocharging business” [press release], 20 July 2022, new.abb. com/ news/ detail/ 93354/ abb-to-spin-off-its-accelleron-turbocharging-business, and “Accelleron – the new face of ABB Turbocharging” [press release], 15 February 2022, new.abb. com/ news/ detail/ 87841/ accelleron-the-new-face-of-abb-turbocharging, accessed 27 February 2023; Ali Assi, Bassel Chokor, Mohamad Hammoud, Ali Hallal, Ali Al Shaer, and Bakri Abdulhay, “Reducing the Turbo Lag of a Fixed Geometry Turbocharger,” International Journal of Innovative Science, Engineering & Technology Vol. 4, No. 1 (January 2017): 234–243; “Auguste Rateau, 1863–1930,” Nature 131 (6 May 1933): 650; “The Autocar road tests 1814: Buick Special,” The Autocar 31 March 1961: 494–497; “Autocar Road test No. 2181: Rover 3500 3,528 c.c.,” Autocar 28 August 1968: 35–39; “AutoTest: BMW 2002 Turbo,” Autocar 2 November 1974: i–viii; “AutoTest: Range Rover (3,528 c.c.),” Autocar 12 November 1970: 56–60; the Auto Editors of Consumer Guide, Encyclopedia of American Cars: Over 65 Years of Automotive History (Lincolnwood, Ill.: Publications International, 1996), and Porsche Chronicle (Lincolnwood, Ill.: Publications International, Ltd., 1995); the Automotive History Preservation Society, Eric B. White Digital Documents Library, wildaboutcarsonline.com; Joe Baugher, “Boeing B-17 Fortress,” 31 July 1999, www.joebaugher. com/ usaf_bombers/ b17.html, accessed 14 February 2023; “Consolidated P-30/PB-2A,” 26 February 2000, www.joebaugher. com/ usaf_fighters/ p30.html, accessed 9 February 2023; and “Curtiss P-6 Hawk,” 31 December 2000, www.joebaugher. com/ usaf_fighters/ p6.html, accessed 9 February 2023; Patrick Bedard, “Saab Turbo,” Car and Driver Vol. 23, No. 3 (September 1977): 65–70; the Before Black website, www.beforeblack.net; “BMW 2002 Turbo E20. The first of its kind,” BMW M Magazine 26 July 2021, www.bmw-m. com/ en/ topics/ magazine-article-pool/ bmw-2002-turbo-e20.html, accessed 6 February 2023; Bentley Motors, “The ‘Blower’ Bentley,” n.d., www.bentleymotors. com/ en/ world-of-bentley/ the-bentley-story/history-and-heritage/ heritage-cars/the-blower-bentley.html, accessed 18 March 2023; “The Berlin Automobile Show,” Motor Land Vol. 9, No. 5 (November 1921): 21–22; Alfred L. Boegehold, “Materials in the Automobile of the Future,” Metal Progress Vol. 70, No. 3 (September 1956): 103–109; John R. Bond, “Miscellaneous Ramblings,” Road & Track Vol. 13, No. 4 (December 1961): 15–17, and “Something for Nothing?” Road & Track Vol. 3, No. 9 (May 1962): 18–24; “The B-O-P 3.5-Liter Aluminum V-8: A Technical Analysis,” Road & Track Vol. 12, No. 3 (November 1960): 22–25; Griffith Borgeson, “4 Cylinder, Twin Cam, 16 Valve American Dream,” Motor Trend Vol. 22, No. 5 (May 1970): 56–61, 111, and The Golden Age of the American Racing Car (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1998); Peter M. Bowers, “The Curtiss Army Hawks,” Profile Publications No. 45 (January 1965); Maurice J. Brevoort, Upshur T. Joyner, and M. Leifer, “Intercooler Design for Aircraft,” Vought-Sikorsky Aircraft Library, National Advisory Committee for Aeronautics SR-124, September 1939; Ray Brock, “Modifying GM’s Aluminum V8’s,” Hot Rod Vol. 14, No. 6 (June 1961): 26–33; “Packard Hawk Performance Test,” Hot Rod Vol. 11, No. 5 (May 1958): 18–21, 76–79; “Supercharging the: Corvair Falcon Valiant,” Hot Rod Vol. 13, No. 7 (July 1960): 28–34, 102–104; and “Turbosupercharged Olds F-85,” Hot Rod Vol. 15, No. 6 (June 1962): 26–31, 86–87; Alfred Büchi, U.S. Patent No. 1,006,907, “Hydrocarbon Power Plant,” filed 30 October 1906, patented 24 October 1911; U.S. Patent No. 1,158,978, “Turbine-Pump, Turbine-Blower, and Propeller,” filed 1 March 1909, patented 2 November 1915; and U.S. Patent No. 1,849,170, “Internal Combustion Engine Provided with Exhaust Turbines and Compressors,” filed 16 December 1925, priority date 24 December 1924, patented 15 March 1932; Buick Motor Division, General Motors Corporation, “AMA Specifications – Passenger Car: Buick 1963,” Automobile Manufacturers Association Form AMA-40A, 25 January 1962, revised 20 June 1962; “Buick Special,” Motor Trend Vol. 13, No. 2 (February 1961): 22–27, 44–45; “Buick 1978: 75 Years of Greatness” [brochure 78-BA-2-9-77, September 1977]; “Buick V-6,” Car Life Vol. 8, No. 10 (November 1961): 8–11; Gilbert Burrell and Frank W. Ball, “Oldsmobile’s New 330 Cu In. V-8 Engine,” SAE Technical Paper 884A (New York: Society of Automotive Engineers, Inc., 1964); “Car and Driver Road Test: Corvair Monza Spyder,” Car and Driver Vol. 10, No. 5 (May 1963): 50–53; “Car and Driver Road Test: Oldsmobile F-85 Jetfire,” Car and Driver Vol. 10, No. 5 (May 1963): 38–40; “Car Life Road Test: Oldsmobile F-85,” Car Life Vol. 8, No. 4 (May 1961): 12–16; “Car Life Road Test: Pontiac 4, Buick 6, Oldsmobile 8,” Car Life Vol. 8, No. 11 (December 1961): 8–13; “Car Life Road Test: Oldsmobile F-85 Jetfire,” Car Life Vol. 10, No. 3 (April 1963): 31–35; “Car Life Road Test: Oldsmobile F-85 Jetfire Sports Coupe,” Car Life Vol. 9, No. 4 (May 1962): 45–49; William Carroll, “Boost by Exhaust,” Sports Cars Illustrated Vol. 3, No. 3 (September 1957): 18–19, 50–51; “Chadwick #4 (1908),” Vanderbilt Cup Races, www.vanderbiltcupraces. com/ cars/ car/ chadwick_4_1908, accessed 10 February 2023; Charles A. Chayne, “Imported Automobile Show,” The Tech Engineering News Vol. 4, No. 6 (December 1923): 205, 228–230; H. Chen, T. Cai, and P. Li, “The Transient Response of Turbocharger Turbines,” 10th International Conference on Turbochargers and Turbocharging (2012), 295–304; Chevrolet Motor Division, General Motors Corporation, “AMA Specifications – Passenger Car: Corvair, 1962,” Automobile Manufacturers Association Form AMA-40A, 23 October 1961, revised 1 March 1962; “AMA Specifications – Passenger Car: Corvair, 164 Cu. In. 6-Cyl., 1965,” Automobile Manufacturers Association Form AMA-40A, 28 September 1964; Corvair factory specifications for 1962 (issued October 1961, revised April 1962), 1963 (issued October 1962, revised November 1962), 1964 (issued October 1963, revised January 1964), 1965 (issued October 1964, revised December 1964), and 1966 (issued October 1965, revised December 1965); and Chevrolet Service News Vol. 34, No. 4 (April 1962); “Corvair Monza Spyder,” Car Life Vol. 9, No. 3 (April 1962): 10–13; A.T. Colwell, R.E. Cummings, and D.E. Anderson, Thompson Products, Inc., “Alcohol-Water Injection for Spark Ignition Engines,” Automotive and Aviation Industries Vol. 92, No. 5 (March 1, 1945): 30–34; comments by ‘Eason’ and ‘826BB’ in “Scout with 150 Turbo engine,” Red Power Magazine forums, 29 December 2016 and 3 January 2017, www.redpowermagazine. com/ forums/ topic/ 105158-scout-with-152-turbo-engine/, accessed 24 February 2023; “Compact power pack (Motor Road Test No. 17/68: Rover Three Thousand Five,” Motor 20 April 1968: 41-46; “Cord 812 Supercharged Convertible Coupe: A Car Life Classic,” Car Life Vol. 8, No. 10 (November 1961): 58–63; “Corvair Monza Spyder,” Car Life Vol. 9, No. 3 (April 1962): 10–13; Crosley Automobile Club website, crosleyautoclub.com, accessed 22 February 2023; Crosley Motors, Inc. “The Crosley Quicksilver Engine with the Thompson Vitamenter” [brochure, ca. 1951] Kris Culmer, “Throwback Thursday 1962: the Oldsmobile Jetfire explained,” Autocar 8 March 2018, www.autocar. co.uk/ car-news/ anything-goes-throwback-thursday/ throwback-thursday-1962-oldsmobile-jetfire-explained, accessed 6 February 2023; Nick Czap, “How Do You Make Turbo Engines More Efficient? Just Add Water,” New York Times 30 September 2016, www.nytimes. com/ 2016/ 09/ 30/ automobiles/how-do-you-make-turbo-engines-more-efficient-just-add-water.html, accessed 6 February 2023; “Design Features of the Buick Special and the Olds F-85 Aluminum Engines,” Parts I and II, Automotive Industries Vol. 124, No. 8 (April 15, 1961): 60–63, 106, 112, and Vol. 125, No. 9 (May 1, 1961): 49–51, 69; Khiem Dinh, “Turbo Tech: Compressor and Turbine Map Details,” MotoIQ, n.d., motoiq. com/ turbo-tech-compressor-and-turbine-map-details/, and “Turbo Tech: Generating Compressor and Turbine Maps,” n.d., motoiq. com/ turbo-tech-generating-compressor-and-turbine-maps/, accessed 23 March 2023; Hugh Dolnar, “The Chadwick Six,” Cycle and Automobile Trade Journal Vol. 11, No. 12 (June 1, 1907): 102–122; Clinton H. Dearborn and Abe Silverstein, “Drag Analysis of Single-Engine Military Airplanes Tested in the NACA Full-Scale Wind Tunnel,” National Advisory Committee for Aeronautics ACR 489, October 1940; David Donald, “Warplane Classic: Lockheed P-38 Lightning: ‘Fork-tailed Devil,'” International Air Power Review Vol. 14 (2004): 124–155; William Drayer, assigner to General Motors Corporation, U.S. Patent No. US3049865, “Turbocharger Control Means,” filed 19 February 1960, patented 21 August 1962; Frederick L. Dryer, “Water addition to practical combustion systems—Concepts and applications,” Symposium (International) on Combustion Vol. 16, No. 1 (1977): 279–295; Terry B. Dunham and Lawrence R. Gustin, The Buick: A Complete History (An Automobile Quarterly Magnificent Marque Book), 3rd ed. (Kurtztown, Pa.: Automobile Quarterly, 1987); Jim Dunne and Jan P. Norbye, Buick 1946–1978: The Classic Postwar Years, 2nd ed. (Osceola, Wis.: MBI, Inc./Motorbooks International, 1993); Helen Jones Earley and James R. Walkinshaw, Setting the Pace: Oldsmobile’s First 100 Years (Lansing, Mich.: Oldsmobile Division of General Motors Corporation, 1996); Helmuth W. Engelman and H. Jack White, “Use of Water Injection to Decrease Gasoline Consumption in an Aircraft Engine Cruising at High Power,” National Advisory Committee for Aeronautics RB No. E4H12, August 1944; Kurt Ernst, “Cars of Futures Past – 1962–1963 Oldsmobile Jetfire,” Hemmings 18 April 2013, www.hemmings. com/ stories/ 2013/ 04/ 18/ yesterdays-car-of-tomorrow-1962-1963-oldsmobile-jetfire, accessed 6 February 2023; John Etheridge, “Corvair Corsa Road Test,” Motor Trend Vol. 16, No. 1 (January 1965): 26–31, and “Olds swings a pair of keen Cutlasses: A 4-4-2 for cutting ET’s and a Turnpike Cruiser for slashing fuel bills,” Motor Trend Vol. 19, No. 2 (February 1967): 53–56; Brett T. Evans, “VIDEO: Cummins Wakes 1952 Diesel Special Indy Car After Years of Slumber,” Truck Trend 24 May 2016, via MotorTrend.com, www.motortrend. com/ news/ 1605-cummins-wakes-1952-diesel-special-indy-car-after-years-of-slumber/, accessed 10 February 2023; “Every Cubic Inch a Horsepower,” General Motors World Vol. XLI, No. 3 (May–June 1962): 2–5; “Evolution of Roots brand in the UK,” Howden Group, www.howden. com/ en-us/ articles/ history/ evolution-of-roots-brand-in-uk, accessed 16 February 2023; “Exhaust-Driven Supercharger for $79.50,” Motor: The Automotive Business Magazine Vol. 73, No. 4 (April 1940): 112; Ken Fermoyle, “Buick, Olds, Pontiac Go Compact,” Popular Science Vol. 177, No. 4 (October 1960), pp. 72–76, 244–246; Warren W. Fitzgerald, “Car Life Classic: 1934 Duesenberg SJ Weymann Torpedo Phaeton,” Car Life Vol. 9, No. 3 (April 1962): 36–43; James M. Flammang, “1962–63 Oldsmobile F-85 Jetfire: First Wave of the Future,” Collectible Automobile Vol. 19, No. 6 (April 2003): 8–17, adapted as the Auto Editors of Consumer Guide, “1962-1963 Oldsmobile F-85 Jetfire,” 4 October 2007, HowStuffWorks.com, auto.howstuffworks. com/ 1962-1963-oldsmobile-f85-jetfire.htm, last accessed 6 February 2023; Patrick R. Foster, Standard Catalog of Jeep, 1940–2003 (Iola, Wis.: Krause Publications, 2003), and The Story of Jeep (Iola, Wis.: Krause Publications, 1998); Devon Francis, “New turbocharger makes Corvair 150 Horses Hot,” Popular Science Vol. 180, No. 4 (April 1962): 77–80, 234; Arthur W. Gardiner and Elliott G. Reid, “Preliminary Flight Tests of the N.A.C.A. Roots Type Aircraft Engine Supercharger,” National Advisory Committee for Aeronautics Report No. 263, 1927; Arthur W. Gardiner and Oscar W. Schey, “The Comparative Performance of an Aviation Engine at Normal and High Inlet Air Temperatures,” National Advisory Committee for Aeronautics Report No. 277, January 1928; “Garrett Corporation Marks 50th Anniversary,” Aircraft Engineering and Aerospace Technology Vol. 58 No. 11 (November 1986): 26–30; Gary’s Turbocharger spotters guide, The Dodge Garage, n.d., www.thedodgegarage. com/ turbo_turbo.html, accessed 1 March 2023; Jeffrey I. Godshall, “A Cord by Any Other Name—Hupp Skylark/Graham Hollywood,” Car Life Vol. 15, No. 2 (March 1967): 66–71, and “What Is a Graham? The Graham Brothers and Their Car,” Automobile Quarterly Vol. 13, No. 1 (First Quarter 1975): 80–82; Aaron Gold, “Why W.O. Bentley Despised the Supercharged Blower Bentleys,” Automobile, 6 June 2019, via MotorTrend.com, /www.motortrend. com/ news/ w-o-bentley-despised-blower-bentleys/, accessed 18 March 2023; Reza Golzari, Hua Zhao, Jonathan Hall, et al; “Impact of intake port injection of water on boosted downsized gasoline direct injection engine combustion, efficiency, and emissions,” International Journal of Engine Research Vol. 22, No. 1 (January 2021): 295–315, first published online 8 April 2019; T. Grace, Automatic Transmission Service Guide (Union, N.J.: Lincoln Technical Institute, 22 September 1966); the Graham Owners Club website, www.grahamownersclub.com, last accessed 18 March 2023; Don Green, “Super Nova,” Car Craft March 1972, reprinted in Chevy II · Nova & SS Muscle Portfolio 1962–1974, ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 1995): 113–115; John Gunnell, ed., Standard Catalog of Pontiac 1926–2002 (Iola, Wis.: Krause Publications, 2012); Bill Gunston, “Fighters 1914–1939,” and “Fighters 1939–1945,” Air Power: A Modern Illustrated Military History (New York: Exeter Books, 1979), and World Encyclopedia of Aero Engines, 5th ed. (Thrupp, England: Sutton Publishing Limited, 2006); George E.A. Hallett, “Superchargers and Supercharging Engines,” The Journal of the Society of Automotive Engineers Vol. 5, No. 5 (November 1919): 371–375; Haynes International, “Our Heritage: Our Company History,” www.haynesintl. com/ company-information/ our-heritage/ our-company-history, accessed 18 February 2023; Des Hammill, How to Power Tune Rover V-8 Engines: For Road and Track (Dorchester, England: Veloce Publishing Ltd., 2005); C.J. Heltemes Jr., “Auto Aerodynamics,” Car Life Vol. 8, No. 8 (September 1961): 50–54; Walter B. Herndon, “GM develops light-weight, compact, Hydra-Matic transmissions,” The SAE Journal Vol. 69, No. 3 (March 1961): 46–48; Hermann Hiereth and Peter Prenninger, eds., trans. Klaus W. Drexl, Charging the Internal Combustion Engine (Vienna, Austria: Springer-Verlag, 2007); Chuck Holsclaw, “The National FAA Safety Team Presents: Pre-ignition/Detonation,” Federal Aviation Administration, FAA Safety Team, April 2019, https://www.faasafety.gov/files/notices/2019/Jul/Preignition.pdf, accessed 19 February 2023; M. Park Hunter, “1962 Oldsmobile Jetfire: Turbo Before Its Time,” Special Interest Autos No. 152 (March-April 1996), reprinted in The Hemmings Book of Oldsmobiles: driveReports from Special Interest Autos magazine, eds. Terry Ehrich and Richard Lentinello (Bennington, Vt.: Hemmings Motor News, 2001); Roger Huntington, “An Engineer Analyzes the 1961 Cars,” Popular Mechanics Vol. 114, No. 7 (January 1961): 152–159, 251, 257, 260–262, 272–273; “An Engineer Analyzes the ’62s,” Popular Mechanics Vol. 117, No. 6 (January 1962): 109–113, 238–242; “A new V-8 for the F-85,” Motor Trend Vol. 15, No. 12 (December 1963): 68–70; “Car Life Road Test: Turnpike Cruiser: Oldsmobile Designs a Long-Legged, Strong-Willed Gas Miser,” Car Life Vol. 14, No. 3 (April 1967): 64–69; “The Rocket Stage 2,” Hot Rod Vol. 17, No. 11 (November 1964): 54–59; “Oldsmobile Aims at the Youth Market,” Car Life Vol. 12, No. 6 (July 1965): 12–15; “Spyder — 150 hp!” Motor Trend Vol. 14, No. 5 (May 1962): 50–55; “Supercharging the Right Way,” Sports Cars Illustrated Vol. 2, No. 2 (August 1956): 24–27, 58–60; “Supercharging II,” Sports Cars Illustrated Vol. 2, No. 3 (September 1956): 42–45, 62–66; “Supercharging III,” Sports Cars Illustrated Vol. 2, No. 4 (October 1956): 46–49, 65–66; “Super Turbocharging the F-85,” Motor Trend Vol. 15, No. 4 (April 1963): 34–37, 88–90; “Turbo-Rocket Power for the Olds Jetfire,” Car and Driver Vol. 9, No. 7 (June 1962): 62–65; and “Turbosupercharging — A Milestone Development,” Car Life Vol. 12, No. 7 (August 1965): 57–60; Roger Huntington and Gene Booth, “More Spunk for the Spyder… and Smoothing Out the Monza,” Car Life Vol. 10, No. 3 (April 1963): 28–29; “Injection Booster for Automobiles,” Popular Mechanics Vol. 91, No. 5 (May 1949): 168; Imperialist, “Curbside Clairvoyant: 1962-63 Olds Jetfire — With Turbo Rocket Fluid! — GM’s Deadly Sin #36,” Curbside Classic 16 October 2017, www.curbsideclassic. com/ curbside-classics-american/ curbside-clairvoyant-1962-63-olds-jetfire-with-turbo-rocket-fluid/, last accessed 29 April 2023; Kazuo Inoue, Osamu Kubota, Noriyuki Kishi, and Shunji Yano, “A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variable Geometry Turbocharger,” SAE Technical Paper 890457 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1989); International Harvester Company, “International Scout Models: Action Wheels for Everyone” [brochure AD-4721-T3 6-9, ca. June 1967]; Charles W. Iseler, “Application of Superchargers to Automobile Engines,” Transactions of the Society of Automotive Engineers Volume 21 Part I (1926): 274–289; JetfireGuy’s OldsJetfire.com website (in particular the technical commentary by Jim Noel), last accessed 6 February 2023; Andrew E. Johnson, “Experimenting with the VNT25 Variable Nozzle Turbocharger,” The Dodge Garage, n.d., www.thedodgegarage. com/ turbo_vnt.html, accessed 1 March 2023; Greg Johnson, “Chief Engineer Tom Wallace – The Definitive Tom Wallace Interview,” Motor Trend 29 March 2007, via MotorTrend.com, www.motortrend. com/ features/ vemp-0610-tom-wallace-interview/, accessed 7 March 2023; J.H. Jones, W.L. Kingsbury, H.H. Lyon, P.R. Mutty, K.W. Thurston, “Development of a 5.7 Litre V8 Automotive Diesel Engine,” SAE Technical Paper 780412 (Warrendale, Pa.: Society of Automotive Engineers, 1978); Michael Jordan, “Short Take: Saab 99 EMS Lambda-Sond,” Car and Driver Vol. 23, No. 1 (July 1977): 103–104; Arthur W. Judge, Motor Manuals Volume I: Automobile Engines (London: Chapman & Hall, Ltd., 1925); David Kennedy, “Cummins at the Indy 500 – Diesel Alley,” Hot Rod 25 April 2016, via MotorTrend.com, www.motortrend. com/ features/ 0808dp-cummins-diesel-race-car/, accessed 10 February 2023; Lewis Kingston, “PH Origins: Water injection,” PistonHeads, 29 January 2018, www.pistonheads. com/ news/ph-features/ ph-origins-water-injection/ 37471, accessed 6 February 2023; William C. Kinsman, “The Cord Models 810 and 812,” Profile Publications No. 35 (Surrey, England: Profile Publications Ltd., 1966); Emil Klingelfuss, “Increasing the Power of Diesel Engines and Aeroplane Engines by the Büchi Process Using Exhaust-Gas Turbo Supercharging. Possibility of Applying Exhaust-Gas Turbo Supercharging to Other Purposes,” The Brown Boveri Review Vol. 24, No. 7 (July 1937): 175–190; Mike Knepper, “Buick Century Turbo Coupe,” Car and Driver Vol. 24, No. 12 (June 1979): 43–50; Jay Kopycinski, “Scout Stats: International Harvester 4×4 Spotters Guide,” FourWheeler, 14 December 2016, via MotorTrend.com, www.motortrend. com/ features/ 1612-scout-stats-international-harvester-4×4-spotters-guide/, accessed 24 February 2023; Jim Koscs, “50 Years Ago, the Turbocharger Was a Disruptive Technology,” New York Times 21 December 2014, www.nytimes. com/ 2014/ 12/ 21/ automobiles/ collectibles/ 50-years-ago-the-turbocharger-was-a-disruptive-technology.html, accessed 9 February 2023, and “The mechanic keeping the forgotten Oldsmobile Jetfire alive,” Hagerty, 12 September 2017, www.hagerty. com/ media/ car-profiles/ oldsmobile-jetfire/, accessed 6 February 2023; Jon Lake, “Warbird Classic: P-47 Thunderbird: Part 1: Early Development and Combat in the ETO,” International Air Power Review Vol. 1 (Summer 2001): 138–169; John Lamm, “The Inner Sanctum Explained,” Road & Track Vol. 29, No. 12 (August 1978): 145–146; Michael Lamm, “Martyr,” Special Interest Autos No. 22 (May 1974), reprinted in Corvair Performance Portfolio 1959-1969, ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 1998): 132–140; Randy Leffingwell, Porsche Turbo: The Inside Story of Stuttgart’s Turbocharged Road and Race Cars (Minneapolis, Minn.: Motorbooks, 2015); John Lehenbauer, “Turbochargers: A history,” TruckTrend 11 June 2018, via MotorTrend.com, www.motortrend. com/ features/ 1806-turbochargers-a-history/, accessed 9 February 2023; James H. Lewis, Gilbert Burrell, and Frank W. Ball, “Turbocharged Oldsmobile F-85 engine develops … one horsepower per cubic inch,” The SAE Journal Vol. 70, No. 6 (June 1962): 50–52 (adapted from Lewis, Burrell, and Ball, “The Oldsmobile F-85 Jetfire Turbo Rocket Engine,” Paper 531B, June 1962); Richard A. Leyes II and Richard A. Fleming, The History of North American Small Gas Turbine Aircraft Engines (Reston, Va., and Washington, D.C.: American Institute of Aeronautics and Astronautics, Inc., and the Smithsonian Institution, 1999); “Liberty 12 Model A (Packard), Moss Turbosupercharged, V-12 Engine [Inventory Number A19660043000],” the National Air and Space Museum of the Smithsonian Institution, airandspace.si. edu/ collection-objects/ liberty-12-model-packard-moss-turbosupercharged-v-12-engine/ nasm_A19660043000, accessed 9 February 2023; “A Life Saver for Fighter Pilots becomes a Power Booster for Cars and Trucks” [Thompson Products advertisement], Flying Vol. 36, No. 6 (June 1945): 139; Matt Litwin, “Reborn Riviera – 1983 Buick Riviera T-Type,” Hemmings, 23 September 2018, www.hemmings. com/ stories/ article/ reborn-riviera-1983-buick-riviera-t-type, accessed 24 April 2023; Daniel R. Lloyd and Nathan J. Lloyd, Tuning and Modifying the Rover V8 Engine (Wiltshire, England: The Crowood Press Ltd., 2019); Ron Loden, “Compact for the Quarter,” Speed & Custom April 1965: 44–48, 58; Karl Ludvigsen, “Buick Built a Better Engine,” Sports Cars Illustrated Vol. 7, No. 5 (November 1960): 46–53, and “Cummins at the Brickyard,” Car Life Vol. 16, No. 6 (July 1969): 32–35; Mark J. McCourt, “1978 Saab 99 Turbo,” Hemmings, 23 September 2018, www.hemmings. com/ stories/ article/ 1978-saab-99-turbo, accessed 6 February 2023, “Gudmund’s Glory – 1977 Saab 99 EMS, 1978 Saab 99 Turbo,” Hemmings Sports & Exotic Car No. 63 (November 2010); and “Leader in a New Era,” Hemmings, 23 September 2018, www.hemmings. com/ stories/ article/ leader-in-a-new-era, accessed 8 February 2023; Kimble D. McCutcheon, “Frank Walker — ‘What can I do about this problem?'” www.enginehistory. org/ Biography/ FrankWalkerWeb1.pdf, accessed 19 February 2023, and “The First Turbosupercharged U.S. Aircraft Engine,” Aircraft Engine Historical Society, www.enginehistory. org/ superchargers.shtml, accessed 9 February 2023; A.J. McKinney, “Some Points in Aeronautical Engines,” The Aeronautical Journal Vol. 13, No. 50 (April 1909): 37–46; Harold H. Macklin, Jr., discussion in Walter Hassan, “The New Jaguar 12-Cyl Engine,” by Walter Hassan, SAE Technical Paper 720163 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1972); Mike McNessor, “The Oldsmobile Turbo-Rocket V-8 introduced the world to lightweight, boosted performance,” Hemmings, 26 July 2022, www.hemmings. com/ stories/ 2022/ 07/ 26/ the-oldsmobile-turbo-rocket-v-8-introduced-the-world-to-lightweight-boosted-performance, accessed 31 March 2023; Bob McVay, “Buick Special,” Motor Trend Vol. 15, No. 9 (September 1963), reprinted in Buick Muscle Cars 1963-1973, ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 2001), and “Oldsmobile F-85 Cutlass: Softly sprung F-85 offers luxury and performance sans blower,” Motor Trend Vol. 15, No. 7 (July 1963), reprinted in Oldsmobile Automobiles 1955–1963 (Brooklands Road Test Books), ed. R.M. Clarke (Cobham, England: Brooklands Books Ltd., ca. 1989); Mike McNessor, “Scout’s Honor – 1965 International Scout,” Hemmings, 23 September 2018, www.hemmings. com/ stories/ article/ scouts-honor-1965-international-scout, accessed 23 February 2023; Keith Martin and Linda Clark, Strange But True Tales of Car Collecting: Drowned Bugattis, Buried Belvederes, Felonious Ferraris, and other Wild Stories of Automotive Misadventures (Minneapolis, Minn.: Motorbooks, 2017); Murilee Martin, “Cut-Down Engine of the Week: IHC Comanche,” Autoweek 28 December 2017, www.autoweek. com/ car-life/ a1837651/cut-down-engine-week-ihc-comanche/, accessed 23 February 2023; Mercedes-Benz Group Media, “Putting on the pressure, one hundred years ago: The first Mercedes compressor cars at the DAA 1921,” 20 September 2021, group-media.mercedes-benz. com/ marsMediaSite/ en/ instance/ ko/ Putting-on-the-pressure-one-hundred-years-ago-The-first-Mercedes-compressor-cars-at-the-DAA-1921.xhtml?oid=51387132, accessed 17 March 2023; “Mercedes-Benz 300SD: The Benevolent Potentate,” Road & Track Vol. 29, No. 12 (August 1978): 142–144; Hans Mezger, “Turbocharging Engines for Racing and Passenger Cars,” SAE Technical Paper 780718 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1978); Jay K. Miller, Turbos: Real World High Performance Turbocharger Systems (North Branch, Minn.: CarTech, Inc., 2008); Klaus Mollenhauer and Helmut Tschöke, eds., trans. Krister G.E. Johnson, Handbook of Diesel Engines (Berlin: Springer-Verlag Berlin Heidelberg, 2010); Jim Moody, the McCulloch Supercharger Website, 6 October 2005, vs57.y-block.info, accessed 17 February 2023; Sanford A. Moss, assignor to General Electric Company, U.S. Patent No. 1,413,420, “Supercharger for Internal-Combustion Engines,” filed 17 December 1920, patented 18 April 1922, and U.S. Patent No. 1,508,707, “Control Mechanism for Aeroplane Superchargers,” filed 8 April 1922, patented 16 September 1924; John Mulhere, “Mercedes-Benz 24/100/140: The touring car that spawned a generation of race cars,” Autoweek 27 April 1981: 12–13; “Murray Rotary Engine,” the National Air and Space Museum of the Smithsonian Institution, airandspace.si. edu/ collection-objects/ murray-rotary-engine/ nasm_A19640635000, accessed 18 February 2023; “Mustang GT-350-S” and “Supercharging: The Basics,” Car Life Vol. 13, No. 6 (July 1966): 40–45; Chuck Nerpal, “Olds: F-85 and Super 88 Road Test,” Motor Life Vol. 10, No. 9 (April 1961): 22–29; “New Buick V-6 1962,” Road & Track Vol. 13, No. 3 (November 1961): 19–21; Jan P. Norbye, “Oldsmobile Jetfire,” The Autocar 27 April 1962: 671–673, and “Testing the Ruggeds…on and off the road,” Popular Science Vol. 187, No. 2 (August 1965): 46–50, 172–173; Jan P. Norbye and Jim Dunne, Oldsmobile 1946–1980: The Classic Postwar Years, 2nd ed. (Osceola, Wis.: Motorbooks International Publishers & Wholesalers, 1993); Kurt Obländer, Manfred Fortnagel, Hans-Juergen Feucht, and Ulrich Conrad, “The Turbocharged Five-Cylinder Diesel Engine for the Mercedes-Benz 300 SD,” SAE Technical Paper 780633 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1978); Gerard F. O’Connor and Michael M. Smith, “Variable Nozzle Turbochargers for Passenger Car Applications,” SAE Technical Paper 880121 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1988); the Old Car Manual Project Brochure Collection website, oldcarbrochures.org; the Old Car Manual Project Free Car Brochures website, storm.oldcarmanualproject.com; “Olds F-85,” Motor Trend Vol. 13, No. 2 (February 1961): 28–31, 44–45; Oldsmobile Division, General Motors Corporation, “1962 Oldsmobile Colors” [brochure, OSP-150C, 1962]; “1963 Sports Cars by Oldsmobile” [brochure, September 1962]; “1967 Oldsmobile: SPECS (Salesman’s Prices, Equipment, Color & Trims, Specifications)” [dealer literature], revised March 1967; Oldsmobile Division, General Motors Corporation, “’68 Oldsmobile: Salesman’s Prices, Equipment, Color & Trims, Specifications” [dealer literature], revised January 1968; “AMA Specifications – Passenger Car: Oldsmobile F-85, 1962,” Automobile Manufacturers Association Form AMA-40A, 22 September 1961; “AMA Specifications – Passenger Car: Oldsmobile F-85 and Cutlass, 1967,” Automobile Manufacturers Association Form AMA-40A, 9 December 1966; Jetfire Service Manual: Oldsmobile F-85 (Lansing, Mich.: Oldsmobile Division, General Motors Corporation, June 1962); “Oldsmobile for ’64: Where the Action Is!” [brochure, September 1963]; Oldsmobile Parts and Accessories Catalog, Chassis Edition, Rev. January 1963 (Lansing, Mich.: Oldsmobile Division, General Motors Corporation, 1963); Oldsmobile Parts and Accessories Catalog, Models Thru 1972 (Lansing, Mich.: Oldsmobile Division, General Motors Corporation, June 1972); Oldsmobile Parts and Accessories Price Schedule, June 1966 Edition (Lansing, Mich.: Oldsmobile Division, General Motors Corporation, 1966); and “There’s Something Extra Under This Hood! Exclusively in Jetfire by Olds!” [brochure, March 1962]; “Oldsmobile F-85,” Car and Driver Vol. 8, No. 6 (May 1961): 82–83, 115–119; “Oldsmobile’s F-85 Cutlass,” Motor Trend Vol. 13, No. 7 (July 1961): 26–27; George Oliver, The Rover (London: Cassell & Co., 1971); William Pearce, “Cummins Diesel Indy 500 Racers,” Old Machine Press 20 January 2019, oldmachinepress. com/ 2019/ 01/ 20/ cummins-diesel-indy-500-racers/, accessed 10 February 2023; Chris Perkins, “How Water Injection Can Produced Big Horsepower Gains,” Road & Track 9 January 2019, www.roadandtrack. com/ new-cars/ car-technology/ a25833896/ how-water-injection-increases-horsepower/, accessed 6 February 2023; Pontiac Motor Division, General Motors Corp., 1962 Pontiac Tempest Shop Manual [S-6204 TP] (Pontiac, Mich.: Pontiac Motor Division, General Motors Corp., August 1961); “Power with pomp (Motor Road Test No. 34/67: Rover 3.5-litre coupé),” Motor 7 October 1967: 59–64; Auguste Camille Edmond Rateau, Austrian Patent No. AT92453B, “Internal combustion engine system for aircraft,” filed 18 November 1920, priority date 7 December 1916, granted 11 May 1923, and U.S. Patent No. 1,375,931, “Pertaining to Internal-Combustion Aircraft Motors,” filed 6 November 1917, patented 26 April 1921; “Reina del Pacifico: The Pacific Steam Navigation Company’s Reina del Pacifico of 1931,” Liverpool Ships, www.liverpoolships. org/ reina_del_pacifico_pacific_steam_navigation.html, accessed 8 February 2023; Neville M. Reiners and William D. Schwab, “Cummins Turbocharged Diesel Engines,” SAE Technical Paper 570078 (New York: Society of Automotive Engineers, Inc., 1957); Frank Richards, “The Use of Coolers in Air Compression,” The Engineering and Mining Journal Vol. 83, No. 22 (June 1, 1907): 1039; “Road Research Report: Corvair Corsa,” Car and Driver Vol. 11, No. 11 (October 1964): 31–36, 89–92; “Road Test: Buick Skylark,” Road & Track Vol. 13, No. 7 (March 1962): 36–39; “Road Test: Buick Special,” Road & Track Vol. 12, No. 3 (November 1960): 32–35; “Road Test: Saab 99 Turbo,” Motor 3 May 1980, reprinted in Motor Road Tests 1980: 202–205; Graham Robson, The Rover Story, 4th ed. (Wellingborough, England: Patrick Stephens Limited, 1988); Addison M. Rothrock, “Calculations of Intake-Air Cooling Resulting from Water Injection and of Water Recovery from Exhaust Gas,” National Advisory Committee for Aeronautics RB E4H26, August 1944; M.R. Rowe and G.T. Ladd, “Water Injection,” SAE Technical Paper 460912, SAE Transactions Vol. 54, No. 1 (Jan. 1946): 26–37, 44; Roy Ruchgott, “How G.M.’s First Turbo Engines Crashed and Burned,” New York Times 26 August 2021, www.nytimes. com/ 2021/ 08/ 26/ business/ turbocharged-cars-jetfire-corvair.html, accessed 6 February 2023; Steven Rupp, “What Are Roots Blowers, Who Invented Them, and How Do They Work?” Hot Rod 15 February 2023, via MotorTrend.com, www.motortrend. com/ how-to/ what-is-a-roots-blower/, accessed 16 February 2023; Saab 99 Turbo Registry, saab99turbo.com, accessed 6 February 2023; Saab-Scania AB, Saab Car Division, “Accessories: Water injection, Group 14:3/1,” September 1988, via SaabWorld.net; “Saab Turbo,” Autocar 11 March 1978: 12–16; Earl H. Sherbondy, U.S. Patent No. 1,346,563, “Automatic Control for Turbo-Compressors,” filed 26 March 1918, patented 13 July 1920; Don Sherman, “Spin Doctor: 100 years ago, one man proved turbocharging’s worth,” Hagerty, 24 January 2022, www.hagerty. com/ media/ automotive-history/ 100-years-sanford-moss-turbocharging/, accessed 9 February 2023; Bill Sanders, “Now you can have it too: Econoperforleration*: Oldsmobile has added it for 1968,” Motor Trend Vol. 20, No. 7 (July 1968): 94–97; Tom Shaw, “1963 Studebaker R2 Lark – Superhero,” Hot Rod 16 January 2014, via MotorTrend.com, www.motortrend. com/ features/ 1963-studebaker-r2-lark-superhero/, accessed 17 February 2023; Dennis Siamaitis, “Pom on the 4 1/2-Litre Supercharged Bentley Part 1,” Siamanitis Says, 5 November 2021, simanaitissays. com/ tag/ amherst-villiers-supercharger-design-bentley/, accessed 18 March 2023; David Singer, “Comparison of a Supercharger vs. a Turbocharger in a Small Displacement Gasoline Engine Application,” SAE Technical Paper 850244 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1985); “Six-Cylinder Chadwick Entered in Vanderbilt Cup Race,” The Automobile Vol. 19, No. 5 (August 6, 1908): 207; Charlie Sponaugle, “History of Haynes International, Inc.,” Pittsburgh Engineer Winter 2005: 7–9; Ufficio Stampa, “Volvo Titan, the largest of the heavy trucks that brought turbo-diesel,” SMET, 3 September 2021, www.smet. it/ en/ blog-en/ volvo-titan-the-largest-of-the-heavy-trucks-that-brought-turbo-diesel/, accessed 19 March 2023; “Staying power,” ABB Group, 20 October 2016, new.abb. com/ news/ detail/655/ staying-power, accessed 18 February 2023; “Steamer Beats Dead Horse Hill Record,” Motor Age Vol. 13, No. 24 (June 11, 1908): 12; STK Turbo Technik, “History of the exhaust gas driven turbocharger,” en.turbolader. net/ Technology/ History.aspx, accessed 18 February 2023; Bryan R. Swopes, “This Day in Aviation: 6 September 1919,” This Day in Aviation, 2017, www.thisdayinaviation. com/ 6-september-1919/, accessed 18 February 2023; C. Fayette Taylor, “Recent Aircraft Engine Developments,” Transactions of the Society of Automotive Engineers Vol. 17, Part I (1923): 872–881; James Taylor, Rover P6: 2000, 2200, 3500: The Complete Story (Wiltshire, England: The Crowood Press Ltd., 2020); “Turbo-Charger,” Car Life Vol. 8, No. 11 (December 1961): 69; Robert Thoreson and James Brafford, “Changes needed to adapt Corvair engine to supercharging,” The SAE Journal Vol. 70, No. 10 (October 1962): 43 (adapted from Thoreson and Brafford, “The Corvair Turbosupercharged Engine,” Paper 531A, June 1962); Jean-François Tissot, “Developing turbochargers into the products we recognize today,” charge! Magazine (Accelleron Industries) 21 December 2020, charge-magazine.accelleron-industries. com/ developing-turbochargers-into-the-products-we-recognize-today/, accessed 18 February 2023, and “How forced induction resulted in greater power density, efficiency, and cleanness,” charge! Magazine (Accelleron Industries) 25 November 2020, charge-magazine.abb. com/ how-forced-induction-improved-internal-combustion-engines/, accessed 18 February 2023; Jerry Titus, “Big Year for Blowers,” Car Life Vol. 4, No. 7 (August 1957): 18–19, 74; “Turbo-Supercharging,” Automobile Engineer Vol. 53, No. 2 (February 1963): 42–51; U.S. Arms Control & Disarmament Agency, “Case Study No. 9: The Garrett Corporation,” Defense Industry Diversification: An Analysis with 12 Case Studies, prepared by John S. Gilmore and Dean C. Coddington, University of Denver Research Industry (Washington: Government Printing Office, 1966): 223–235; U.S. Army Air Forces, Pilot Training Manual for the Thunderbolt P-47N (AAF Manual 51-127-4), 1 September 1945; United States Congress, 94th Congress (1975–1976), “S.622 – Energy Policy and Conservation Act,” via Congress.gov, www.congress. gov/ bill/ 94th-congress/ senate-bill/622/, accessed 6 March 2023; U.S. Department of Energy, Alternative Fuels Data Center, “Fuel Properties Comparison,” January 2021, afdc.energy. gov/ fuels/ properties, and “Methanol,” afdc.energy. gov/ fuels/ emerging_methanol.html, accessed 8 February 2023; U.S. Environmental Production Agency, The 2022 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975, EPA-420-R22-029, December 2022; Claude Viret, “Chrono 115 episode 10: the turbocharging saga,” Renault Group Heritage, 29 January 2014, www.renaultgroup. com/ en/ news-on-air/ news/ chrono-115-episode-10-the-turbocharging-saga/, accessed 27 February 2023; Werner Theodor von der Nuell, “Superchargers and Their Comparative Performance,” SAE Quarterly Transactions Vol. 6, No. 4 (October 1952): 753–782, and “Turbocharging for Better Vehicle Engines,” SAE Technical Paper No. 631A (630002) (New York: Society of Automotive Engineers, Inc., January 14–18, 1963); Tom F. Wallace, “Buick’s Turbocharged V-6 Powertrain for 1978,” SAE Technical Paper 780413 (Warrendale, Pa.: Society of Automotive Engineers, Inc., 1978); Alex Walordy and the Editors of Cars, “The Aluminum V8: A Mass Production Milestone,” Engines 1962: 56–58; G.R. Whale, “A Look Back at the First 100 Years of the Cummins Company,” Four Wheeler, 21 February 2020, via MotorTrend.com, www.motortrend. com/ news/ cummins-100-years/, accessed 19 March 2023; Joe H. Wherry, “Detroit ‘s Stock Rods,” Motor Trend Vol. 9, No. 3 (March 1957): 24–25; Jim Whipple, “Buick Special’s performance-plus economy,” Popular Mechanics Vol. 115, No. 3 (March 1961): 122–125, 286–291; “Comparing the ’61 Compacts,” Popular Mechanics, Vol. 114, No. 7 (January 1961): 147–151, 260; “PM Owners Report: Nimble Olds F-85 Pleases Owners; Mileage, Transmission Draw Fire,” Popular Mechanics Vol. 120, No. 1 (July 1963): 76–79, 196–197; “PM’s 1000-Mile Road Test of Buick’s New V-6,” Popular Mechanics Vol. 116, No. 4 (October 1961): 108–111, 258–260; “Spotlight on the Turbocharged Olds F-85 and Corvair,” Popular Mechanics, Vol. 117, No. 11 (May 1962): 60, 62; Graham White, R-2800: Pratt & Whitney’s Dependable Masterpiece (Warrendale, Pa.: Society of Automotive Engineers, 2001); Jim Wright, “1964 Studebaker Super Lark,” Motor Trend Vol. 15, No. 12 (December 1963): 20–25; “Corvair—performance,” Motor Trend Vol. 15, No. 6 (June 1963): 42–47; “Oldsmobile F-85 Jetfire,” Motor Trend Vol. 14, No. 9 (September 1962): 26–31; “Project: Horsepower,” Motor Trend Vol. 14, No. 1 (January 1962): 58–63; and “Super-Offy,” Car Life Vol. 13, No. 2 (March 1966): 38–41.

Please note that any exchange rate equivalencies or inflation estimates cited in this article are approximate and are provided solely for the reader’s general reference — this is an automotive history, not a treatise on currency trading or the value of money, and nothing in this article should be taken as financial advice of any kind!


RELATED ARTICLES


18 Comments

Add a Comment
  1. Pleased to see this. Impressive, as usual.

  2. There may have been an antidetonant for other applications at the time. If so, I’m betting that the manufacturer never explicitly marketed it to Jetfire owners.

    1. I’m not sure if Thompson was still selling Vitane by this point, but it wouldn’t have been ideal for the Turbo-Rocket V-8 anyway. At any rate, Oldsmobile literature most emphatically discouraged using substitute fluids, which was understandable, since using a different fluid risked either diminishing the effectiveness of the system or risking it freezing in cold weather.

      There were a number of technical papers published toward the end of WW2 summing up wartime experience and best practices with regard to fluid injection, which I suspect the engineers at Oldsmobile (or perhaps Rochester, who designed the final injection system) read and took to heart, as they followed those recommendations quite assiduously.

  3. I remember reading that the F85 – in its earliest development stage – was to have a transverse 60 degree V6, and an automatic transaxle that used the hardware from the Roto-5 automatic but with three chains to connect engine to gearbox to wheels. It was killed early in the development stage – due to cost, of course – but we did get something useful from that project. The 60 degree V6 developed by Olds engineers sat on the shelf until the late 1970s when a narrow V6 was needed for the upcoming X car. The Olds design was handed to Chevrolet to get them started and then they finalized the engine for production. But if you look carefully at the 2.8/3.1 V6 from the early 80s, you can see details in the block – notably timing chain area – that look a lot like the small block Olds V8. In fact, it looks a lot more like an Olds motor than a Chevy.

    What hit the showrooms in late 1960 was fairly conventional, but looking at the MSRP that would be in the high $20k in 2023 dollars, there wasn’t much engineering magic they could include without pricing the car out of the market or losing a lot of money on every one they sell.

    1. It’s true that Oldsmobile did experiments with FWD for a car the size of the F-85, but the timetable makes it unlikely it would have been for 1961. The first FWD test mule wasn’t built until early 1960, when the initial production F-85 was very close to pre-production. At that point, the FWD project was at a rather nascent stage (the test mule weighed about 600 lb more than a RWD F-85, the chain drive was still quite crude, they were still evaluating whether they needed two CV joints per side, and I think it was using pieces of an older four-speed Hydra-Matic), so even if the division had been enthusiastic and corporate management had signed off on it for production, I think it would likely have been for a second-generation F-85. There simply wouldn’t have been time to get it into producible shape for 1961.

      (There is some confusion on the timeline, stemming in part from the fact that both Oldsmobile Advanced Design Group and the corporate Engineering Staff were working on the project concurrently in different ways. (Oldsmobile asked Engineering Staff to develop a gear-drive transfer unit, which involved a Buick Dual Path Turbine Drive two-speed automatic.) However, Andy Watt, who was head of Advanced, said unequivocally that until early 1960, Oldsmobile FWD prototype development was still only at the stationary test rig stage.)

      I have seen Oldsmobile engineers attribute the Chevrolet 2.8-liter V-6 to the abortive Oldsmobile FWD project. However, I’m very skeptical of the idea that it “sat on the shelf” until the seventies or that an almost 20-year-old design for an unproduced Oldsmobile experimental engine would be “handed” to Chevrolet. Weird things happen sometimes, so I suppose it’s not outside the realm of possibility, but it seems more like a piece of internal folklore born of old divisional rivalries. I’ve never found any substantive details about the V-6 used in the FWD mules (neither the SAE paper nor the GM Engineering Journal articles about Oldsmobile FWD development even mention its displacement), and since that engine never got close to production, it’s not a claim that seems particularly verifiable. Also, the “small block” Oldsmobile V-8 — by which I assume you mean the 330/350/307 rather than the aluminum Rockette engine — didn’t yet exist as such in 1960 (the bulk of its initial development was in 1962 and early 1963), although it’s possible that the experimental V-6 previewed certain details later used on that engine. To the extent that the 2.8-liter V-6 looks “like an Olds motor,” it seems more plausible that the source of inspiration was the smaller Oldsmobile V-8, which WAS a production engine, and a very familiar one by the time the FWD X-body cars were in development.

      (At a glance, the most obvious resemblance between the 2.8-liter V-6 and the Oldsmobile V-8 is the way the block forms a kind of integral shroud for the timing chain. Oldsmobile said they did that because they wanted to be able to use a flat timing chain cover, while Chevrolet’s explanation was that it allowed them to avoid using a steel backing plate for the cam drive.)

  4. Aaron,

    Great article as usual! Thanks.

  5. Not only did turbocharged Corvairs have a cylinder head temperature gauge, there was also an under-dash buzzer that alarmed if the head temp get too high. I’ve read that Chevrolet engineers were worried about sustained high loads like pulling a trailer or climbing a long, steep mountain pass and wanted an audible alarm to get the driver’s attention to back off the throttle.

    1. Some of the period testers noted that while there was a cylinder head temperature gauge, the gauge didn’t provide any specific indication of how high was too high, so supplementing it with a buzzer was prudent. That notwithstanding, adding the new instruments rather than simply an amber “HEAD TEMP” light in the existing panel was a worthwhile move, and suggested that despite the comparative simplicity of the Spyder package, Chevrolet engineers had a clearer idea of its potential market and what those buyers might want.

      1. I think it had all three: a gauge, an idiot light, and a buzzer. I’ve never driven a Corvair turbo but I’ve had several Corvairs and all had a combination head temp/oil pressure idiot light. As far as I know the turbo kept that and added the gauge and buzzer.

        Your extensive follow up on later turbocharged cars was fascinating, especially the point about Porsche not producing a 911 turbo until 1975, 13 years after the Corvair turbo. It seems as if the Corvair wasn’t so much a poor man’s Porsche, rather, the 911 turbo should rightly be considered a rich man’s Spyder.

        1. Porsche’s 1978 SAE paper on their turbocharging development makes clear that they were aware of the Spyder and Jetfire (as one would expect), but were not terribly familiar with them, asserting, for example, that they were made only in 1964 and 1965.

          At any rate, what’s distinct about how Porsche approached turbocharging was that it was an offshoot of their racing efforts; their first turbocharged 917 was for the 1972–73 Can-Am series, and the development of the 930 and 935 followed that. Competition has shaped a lot of automotive turbocharging development, and so it’s notable that it WASN’T a factor in the creation of the Jetfire or Spyder. Oldsmobile didn’t develop the Jetfire as an homologation special, and while Chevrolet created the Spyder in large part to try to bolster the credibility of the Corvair Monza as a sporty car, it was neither developed for or as a street version of any racing project.

  6. Marvelous. As usual.

    I am–again–impressed with both your research and your ability to write about it.

    Thank you.

  7. Another great article, and I thank you for it. BMW and SAAB both claiming ‘firsts” annoys me. Once again Detroit doesn’t get it’s due credit

  8. Stellar work Aaron! Thank you very much for the depth and breadth of your research and excellent explanations. I feel blessed to be able to read your work. As a warm up to another comment I might make on the Tempest article, a recycling of ideas I have about GM, don’t feel obliged to read closely.

    I find GM an interesting corporation where short term profit, and lots of it, were so important and yet long term engineering development seems only to apply to the largest and cheapest construction engines and chassis. I like the idea of turbo’s, but both applications seem suspect. The Corvair, with it’s limited cooling ability, is somewhat suspect as a turbo candidate. The Olds, with excellent cooling and a strong enough block is much better. I like the ADI concept, but I don’t understand the requirement for alcohol in the ADI in areas that don’t freeze! Certainly in the summer it’s not freezing anyway. Given the technology they had available, perhaps more development might have reduced the issues, but as a mass market engine the Jetfire seems like a significant misunderstanding of the American motoring public. Of course, that same misunderstanding would occur again with the Vega and its lack of a coolant reservoir…

    Thanks

    1. In principle, if you lived in a climate where it never dropped below freezing, you might have been fine just running distilled water, but even in desert areas, low nighttime temperatures might make that dicey. Also, trying to change the fluid type based on climate seems troublesome: For instance, if you had been running distilled water in the ADI tank, but planned a trip into the mountains to go skiing, how would you get back to a suitable water/alcohol mixture, short of draining the tank and refilling it with the recommended fluid? I’m sure Oldsmobile engineers reviewed some of the extensive wartime data on ADI systems (there were several SAE papers on that subject), which found that a 50/50 water/methanol mix offered better detonation-limited power as well as resistance to freezing, and concluded that would be the best compromise for year-round use.

      I just don’t think ADI is very practical for general-use passenger vehicles. It’s one more maintenance item to keep track of, and it requires too much knowledge for the average owner. If you use it regularly, the added cost of the fluid is a hassle (unless you throw caution to the wind and run distilled water), and using it infrequently increases the risk of something going wrong, even if that just means “not noticing when you finally run the reservoir dry.” I don’t see any real way around that; it’s a conceptual shortcoming rather than a problem of flawed execution (although in this case the execution was a bit flawed as well).

      The Vega’s lack of a coolant reservoir was the opposite problem: It was a disastrous cost-cutting measure that could (and should) have been completely avoided!

  9. I read a wonderful book on the Allison V-1710 aircraft engine titled ‘Vee’s For Victory’ by Daniel D. Whitney. Allsion was owned by GM and the V-1710 was subject to much experimentation with turbocharging in cooperation with General Electric. Those efforts culminated in the successful application of turbocharged V-1710’s in the Lockheed P-38 Lightning of WWII. I wonder if any of that research was applied to the Corvair and Jetfire. Both GM’s Detroit Diesel and Electromotive Divisions did extensive work applying turbochargers to 2 cycle diesel engines in the 50’s but that technology was likely not applicable to gasoline engines

    1. I wonder if any of that research was applied to the Corvair and Jetfire.

      Other than maybe Gil Burrell or someone else leafing through some old reports, probably not in any substantive way. The most relevant aspect of wartime experience for the Spyder and Jetfire in terms of the turbo installations themselves would probably have been in the area of materials, which was more the responsibility of AiResearch and TRW. Aircraft turbo-superchargers weren’t particularly relevant in packaging or operating conditions, but they did have to endure high exhaust temperatures, so the materials used to enable their turbine blades to survive the heat were more useful for passenger car turbocharger applications than truck diesels were. (The challenge in that respect was getting something that was durable enough and still producible at reasonable cost.)

  10. My daily driver in mid 1960’s was a ’62 Jetfire… It had 44K miles when I got it. I added a tach and was disappointed to see it pumped up the lifters at only 4600 RPMs/98 MPH indicated… It was in full boost then and accelerating hard, but the front end just dropped as power stopped… The drawing for the automatic tranny looks wrong, more like a TH350… The Roto Hydramatic max auto shifted in Drive at 4400 RPMs… could be held higher manually, but the engine only had 200 more RPMs… started having the downshift valve jam so was replaced with a semi-centrifugal clutch, 3 speed, and clutch linkage from a Buick Special… attractive chrome flat bar Sparkomatic floor shifter… It averaged 25 MPG in mostly easy driving on the expressway mostly… Turbo Rocket fluid was $3.50/gallon, kinda pricey in those days… and sometimes out of stock at some dealers… lasted forever if you didn’t get into boost… I was a starving college student at GMI in those days… OK, not starving, but pinching pennies and living poor… bought adjustable rocker arms from J C Whitney to get the RPMs up, but never got around to installing… friends told me shimming the valve springs would have worked better… the boost prolly created lifter pump up at a lower RPMs than in the 4 bbl. engine as boost tends to hold intake valves open against the valve springs… Without Turbo Fluid, power prolly at least as good as 4 bbl. engine with identical spec.s but no 1 psi of boost… the engine revved quickly enough in first gear little boost was created by the heavy rotor turbo… second gear felt as strong as first as full boost was happening… 300 lb.-ft. spec… with the semi-centrifugal clutch from a stop in first gear, flooring it, and dropping the clutch under 2500 RPMs, it just took off quickly and smoothly like an automatic… above 2500 it gave one wheel peel(no posi)… I don’t know if the stock Jetfire clutch was semi-centrifugal… Mine was garnet mist (like ‘Vette Honduras maroon?) with white painted convertible style hard top and two tone shades of red interior… looking back those were damned cute little cars…

    1. Buzz,

      Thanks for sharing your recollections! The transmission diagram is drawn by me rather than taken from a service manual, so its lack of scale and stylistic eccentricities might throw you, but that’s how a Roto Hydra-Matic was laid out. (It’s definitely not a TH350!) In terms of rev limits, the 4,600 rpm power drop-off wasn’t lifter pump-up, but running out of CFMs, as it were. The Jetfire carburetor had a very small venturi area, which quickly became a bottleneck at higher speeds. This was by design, since the smaller carb improved intake air velocity at lower speeds, and running out of breath when it did made it very difficult to overspeed the turbine, which was redlined at 100,000 rpm. Even if you coaxed a few more RPM out of the engine, it was very difficult to exceed that limit, which was a safety feature.

Leave a Reply

Your email address will not be published. Required fields are marked *

Comments may be moderated. Submitting a comment signifies your acceptance of our Comment Policy — please read it first! You must be at least 18 to comment. PLEASE DON'T SUBMIT COPYRIGHTED CONTENT YOU AREN'T AUTHORIZED TO USE!