Changing Winds: The 1934-1937 Chrysler Airflow

The streamlined Airflow remains the best known (and most infamous) of all prewar Chryslers, a bold and ambitious engineering achievement that became a notorious commercial flop. This week, we look at the origins and fate of the 1934-1937 Chrysler Airflow and its 1934-1936 DeSoto sibling.

1934 Chrysler CU Airflow Eight grille bars © 2007 George Camp per
Grille of a late 1934 Chrysler CU Airflow Eight. (Photo © 2007 George Camp; used with permission)

WALTER P. AND THE THREE MUSKETEERS

Even before his death in 1940, Walter Percy Chrysler was becoming a larger-than-life figure. The son of a railroad engineer from Kansas, Chrysler rose from a five-cents-an-hour job as a machinist’s apprentice to the presidency of Buick before his 43rd birthday. In the early 1920s, he helped to resuscitate one failing automaker and transformed two others into a highly successful eponymous corporation. He was Time‘s Man of the Year in 1929 and by 1931, his name adorned the world’s tallest building.

The early history of the Chrysler Corporation, however, is also the story of three other men: Fred M. Zeder, Owen R. Skelton, and Carl Breer. It was Zeder, Skelton, and Breer who designed the initial 1924 Chrysler Six for what was then the Maxwell Motor Corporation, and they would oversee Chrysler’s engineering until after World War II.

The eldest of the three, Carl Breer, was originally from Los Angeles, a graduate of Throop Polytechnic Institute (now Cal Tech) and Stanford University. In 1909, he’d joined an Allis-Chalmers apprenticeship program in Milwaukee, Wisconsin, where he met Fred Zeder, several years younger and newly graduated from the University of Michigan’s School of Engineering. The two became fast friends, and when Zeder became chief engineer of Studebaker’s Detroit automotive operations four years later, he cabled Breer to join him there. Around the same time, Zeder hired Owen Skelton, a young engineer from Ohio who had previously worked at Packard.

In 1920, after several successful years at Studebaker, Zeder, Skelton, and Breer learned that Walter Chrysler was interested in recruiting them for Willys-Overland, whose financial backers had recently hired him to turn the struggling company around. At Willys, the trio developed a new, thoroughly modern six-cylinder engine and an entirely new car, which at one time was intended to carry the Chrysler name. While Willys-Overland’s ongoing financial weakness — and conflicts between Chrysler and founder John N. Willys — eventually stymied those plans, Chrysler was very impressed with the three young engineers, suggesting that the trio start their own consulting firm in December 1921. He even secured them their first contract with the Maxwell Motor Company, of which Chrysler had recently become a director.

In August 1922, Zeder, Skelton, and Breer re-approached Chrysler, who had departed Willys six months earlier to focus his attention on Maxwell and the moribund Chalmers Motor Company. The trio again broached the idea of building a six-cylinder car under the Chrysler name, using an engine of their design. Walter Chrysler was very receptive, and Zeder, Skelton, and Breer Engineering Co. soon secured a contract with Maxwell. In June 1923, ZSB Engineering was absorbed by the recently merged Maxwell-Chalmers Motor Corporation and the trio took over all engineering operations, including the development and launch of the first B-Series Chrysler Six, introduced to the public in January 1924.

The Chrysler Six was a great success, allowing Walter Chrysler to organize the Chrysler Motor Corporation, incorporated in Delaware on June 6, 1925. Three weeks later, the Chrysler Corporation absorbed Maxwell, and Zeder, Skelton, and Breer all became senior Chrysler executives.

As vice president of engineering, Fred Zeder was nominally senior to Skelton and Breer, who became Chrysler’s executive engineer and chief of research, respectively. In practice, though, any divisions between them were ones of focus and specialization, rather than rank. The three were lifelong friends: for more than two decades, they even sent out joint Christmas cards. Breer, who had boarded with Fred Zeder’s family when he first moved to Detroit, later married one of Zeder’s sisters, and named their first son Fred. Walter Chrysler likened the trio to Athos, Porthos, and Aramis, Alexandre Dumas’ Three Musketeers.

Chrysler Building at night David Shankbone 2008 CCBY-SA30Unported
Opened in 1930, the Chrysler Building, which stands 1,048 feet (319 meters) high, was briefly the world’s tallest building. It was designed by architect William Van Alen for developer William H. Reynolds, but Walter Chrysler bought the design in 1927. It was not owned by the Chrysler Corporation, although Chrysler commissioned the corporate engineering staff to develop its groundbreaking air conditioning system. Chrysler’s family sold their interest in the building in 1947. (Photo © 2008 David Shankbone; used under a Creative Commons Attribution-ShareAlike 3.0 Unported license)

Chrysler’s relationship with his “Three Musketeers” was that of a confident and enthusiastic patron. In sharp contrast with Henry Ford, who tended to micromanage his technical staff, Chrysler had abiding faith in the expertise of his engineers. While he was often curious about their latest developments, he generally limited his involvement to the occasional word of encouragement. Carl Breer later recalled that Walter Chrysler always trusted their judgment, and even during the worst parts of the Depression, research operations were largely exempted from corporate belt tightening.

It probably helped that none of the Three Musketeers was a wild-eyed dreamer. Chrysler introduced many significant engineering features during the trio’s long tenure (even the earliest 1924 cars had four-wheel hydraulic brakes, by no means the contemporary norm), but only one of their production car lines could be considered truly radical.

CONCEIVING THE AIRFLOW

The oft-repeated story, originally presented in Carl Breer’s 1960 memoir, says that the impetus for the Airflow came in 1927, when Breer and his wife were summering in Gratiot Beach, in Port Huron, Michigan. One evening, Breer saw what he initially assumed was a flock of migrating birds, only to realize it was actually a flight of Army Air Corps pursuit planes on their way back to Selfridge Field, 35 miles (55 km) away.

Seeing the aircraft in flight led Breer to contemplate the contrast between aircraft design and the primitive state of automotive aerodynamics. (Breer was not a stranger to aviation engineering; during World War 1, while still a Studebaker employee, he had worked with O.E. Hunt and James Heaslip on the production engineering of the 12-cylinder Liberty engine used in many Allied aircraft.)

Aerodynamic streamlining was not a new idea in automotive design even in 1927. In the early twenties, a number of aviation engineers had turned their attention to automobiles, particularly in Germany, where the Armistice had placed sharp restrictions on the postwar aircraft industry. At the 1921 Berlin Auto Show, for example, Austrian engineer Edmund Rumpler had displayed a prototype of his remarkable Tropfenwagen, a teardrop-shaped, mid-engined car with a single headlight and a 157 cu. in. (2,580 cc) W6 engine. Later wind tunnel tests revealed that the Tropfenwagen had a drag coefficient of only 0.27, highly respectable even today.

Rumpler didn’t find an automaker willing to put the car into mass production, but Benz et cie adapted his design and chassis for the Benz Tropfenwagen racer (developed by Willy Waub and Ferdinand Porsche), which competed in Grand Prix events in 1923 and 1924. Rumpler persevered, eventually developing the short-lived Tropfen-Auto RU 4A106, launched in 1924. Powered by a 160 cu. in. (2,614 cc) four with 50 horsepower (37 kW), about 100 of the futuristic-looking cars were built before production ceased in 1925. Some ended up as taxicabs in Berlin, although their poor reliability and limited cargo space made them unpopular. Director Fritz Lang acquired a handful of Tropfen-Autos for his 1926 science fiction epic Metropolis; all were destroyed in the film.

1932 Bergholt Streamline front 3q © 2010 Pat McLaughlin per
Another early aerodynamic design was the 1932 Bergholt Streamline, developed by aviation engineer Fred Bergholt. Based on a 1932 Ford Model 18 chassis, the Streamline was a one-off, although Bergholt tried without success to find an automaker willing to put it in production. He kept the car until his death in 1978, sometimes using it as his daily driver. It was restored in the early nineties; it’s seen here at the 2010 Concours d’Elegance of America at Meadow Brook. (Photo © 2010 Patrick McLaughlin; used with permission)

We don’t know exactly how much Breer knew about these and other contemporary experiments, but in any event, Chrysler Engineering’s practical knowledge of aerodynamics in 1927 was close to nil. That fall, Breer hired Bill Earnshaw, a Dayton, Ohio-based consulting engineer and personal friend of the Wright Brothers, to conduct preliminary aerodynamic research. In November, Orville Wright helped Earnshaw set up a small wind tunnel for testing purposes. Intrigued by Earnshaw’s results, Carl Breer persuaded Walter Chrysler to authorize construction of a larger, in-house wind tunnel, which was finished by September 1928. Aerodynamic work continued even after the stock market crash in the fall of 1929, and by 1931, Chrysler engineers had tested at least 50 scale models.

REPACKAGING THE PASSENGER CAR

It was hardly shocking when Chrysler’s early wind tunnel tests revealed that most late-twenties cars produced tremendous drag; considering the blunt radiator shells and flat, upright windshields of the day, it was inevitable. More surprising was the observation that many closed bodies were significantly slipperier in reverse than they were moving forward, in some cases, by up to 30%.

As Breer’s team soon realized, that curious fact was a byproduct of what was then conventional engine and suspension layout. Since most passenger cars still had solid axles front and rear, their engines were usually mounted behind the front axle: what today we would call a front/mid-engine layout. The position of the engine pushed the passenger compartment well back in the chassis, particularly with bulky straight-eight engines. In most closed bodies, the cabin ended just forward of the rear bumper; the ‘trunkback’ or ‘notchback’ profile was still a few years in the future. The net result was a long, narrow nose and a wide, bulbous tail, exactly the opposite of the aerodynamically ideal teardrop shape. Breer concluded that significantly reducing drag would require a very different profile with a broad, smooth nose and a narrow, tapering tail.

One way to achieve that was to simply reverse the customary layout, putting the engine behind the passenger compartment, as Edmond Rumpler had done with the Tropfenwagen and Tropfen-Auto. Breer considered that possibility, but ultimately abandoned it, partly out of concern for the effects of a rear engine on handling and stability, partly because such a layout would have required too much new drivetrain hardware. Another possibility, tacking an extended tail cone onto a mostly conventional body, was aerodynamically effective, but neither very practical nor particularly attractive. However, without such addenda, a sharply sloping tail would take a big chunk out of rear passenger space unless the seating layout and packaging were significantly revised.

1932 Trifon Special front 3q Chrysler Historical Collection
A vintage Chrysler photo of the Trifon Special, the first running prototype of the Airflow, shot in December 1932. With its plain bumpers, sloping hood, and small radiator opening, it bears only a general resemblance to the production Airflow, although it has the one-piece curved windshield found only on the big CW Airflow Imperial Custom limousines. Note the running boards, which were later removed from this car. (Photo © 1932 Chrysler Group LLC – Historical Services; used with permission)

With that in mind, Breer and chief body engineer Oliver Clark set about rethinking the packaging of the typical passenger car. They started with six-cylinder sedans and coupes — what in production would become the DeSoto Airflow and the Canadian Chrysler CY — and laid out a seating arrangement that would allow the desired shape, while keeping the wheelbase and overall length as short as possible. First, they widened the front seat to make it somewhat wider than the rear bench, the reverse of the usual practice. (Initial plans actually called for five-passenger seating, with three in front, two in back, but the Chrysler sales organization said no.)

The rear seat, meanwhile, was moved forward of the rear axle, with the front seats, dashboard, and windshield shifted forward accordingly, not unlike Chrysler’s much later “cab-forward” LH cars. Those changes required the engine to be shifted about 20 inches (51 cm) forward, positioning it above the front axle, rather than behind it. In production Airflows, the engine’s center of mass was slightly behind the axle and the engine was tilted downward about five degrees at the clutch side to minimize the height of the driveshaft tunnel.

Even with essentially stock engines and drivetrains, making these changes was complicated and expensive, and their actual value was debatable. Most American highways had speed limits of 45 mph (72 km/h) or less in those days, and streamlining provided little benefit at lower speeds. In Europe, where taxable horsepower rules favored smaller displacements, obtaining a respectable maximum speed with a tiny engine had some allure, but that was not a major concern in the U.S. market.

If better aerodynamics had been the only advantage of Breer and Clark’s repackaging job, we suspect that the Airflow might never have made it to production. However, Breer and his team found that the new layout paid unexpected dividends in a far more marketable area: ride quality.

View All

16 Comments

Add a Comment
  1. A wonderful article. I still have some very vivid memories of the Pennsylvania AACA vintage car shows back in the 1970′s when a couple of Chrysler Airflows would show up. And definitely got noticed, unlike my personal ’37 Buick Special.

    Now, how about some follow-up! I’d love to see an article on the Lincoln Zephyr, and would especially love to see something on the Hupp Aerodynamic’s of 1934-35. The 1937 Ford wouldn’t be out of line, either. The mid-30′s were definitely a wonderful time for automotive design.

    1. I would love to do the Zephyr and the original Continental, if I can put together enough pictures. (The fact that I was unable to find a ’36 or ’37 Zephyr photo to include in this article, as a contrast with the Airflow, tells you how many I have right now..!)

  2. I’d like to second the earlier commenter, the mid ’30s to early ’40s period really was a fascinating early golden age in automotive styling, where for the first time styling really was given a high priority over the more utilitarian looks of the 20s-early 30s, even if the customers of the day didn’t always go for the more radical examples of streamlined Art Deco, as was the case with the Airflow and shark nose Grahams.

    Although I appreciate the need to jump around a bit for variety, please do consider more articles on the ’30s streamliners in the future, as it is such a fertile era. – the Cord 810/812 would be a great read.

    As an aside, I read an article a few years back about an architect or fashion designer (some creative professional) in Manhattan who had a really special custom CW restomod built, taking an original Airflow body and interior and retrofitting it with a modern drivetrain and undercarriage, apparently the owner loved the Art Deco style and was using it as a daily driver in the city. Wish I had saved the article, but as I recall, there weren’t many pictures with it, but definitely an interesting project.

    1. I’m not categorically opposed to restomods, but doing it with a car as rare as a CW Imperial seems…wrong. I don’t know if they’re on the list of capital-C Classics (if not, they ought to be), but they’re extremely rare, with a lot of unique components (dashboard, brakes, springs, driveshaft, wheels, windshield). The CW is so huge and so heavy that even with a modern drivetrain, it would be a handful in city traffic — it’s bigger and heavier than an Escalade ESV. Admittedly, if it was in sad shape to start with, restoring it would be a serious pain in the ass, but still…

  3. Very interesting as always Aaron, I had a passing knowledge of the Airflows but it is great to read about the detail – I can’t imagine more than a few current cars would warrant the same attention!

    I saw a 1934 Airflow last year (with flat camera batteries!) and I remember previously one of the later model ones with what was quite evidently a tacked-on traditional grille. Looking at the photos perhaps what made the car look so jarring is the horizontal line of the hood which gives the optical illusion that the nose of the car is higher than the cowl, and I find the 6cyl cars better looking because the shorter nose lessens that impact. On the point that aero design per se was not sales-proof perhaps a slight taper for a less bulbous appearance, and wider-set headlights, would have made a difference?

    Rob it would be interesting to hear more about that car too.

    1. John,

      I hadn’t thought about the nose seeming higher than the cowl, but looking at the photos again, I see what you mean. It’s exacerbated by the position of the hood ornament, which gives the tip of the nose a bit of a ‘ski jump’ flair, even on the ’34s, where the original hood line actually slopes downward quite a bit. I imagine that is one of the factors that contributes to what I think of as a ‘stubby’ look to the whole car (especially sedans). The 1934 CU is quite a big car, but its rounded contours make it look smaller than it actually is, an effect that only the really long wheelbases of the CX and CW Imperials offset to any great degree.

      Deciding to mount the headlights in the leading edges of the body sides, rather than the fenders, was really limiting, both in spacing and light size. I don’t know why they didn’t mount the lights in the front fenders, as John Tjaarda did with the Zephyr. (The production Zephyr’s front end was mostly redone by Bob Gregorie, but the fender-mounted lights were on the original Briggs prototype.) I think the headlights of the ’36-’38 Zephyrs still look a bit awkward, but their spacing makes the Lincoln look lower and wider than the Airflow, even though it really isn’t.

      I imagine these are all reflections of the fact that the Airflow was [i]engineered[/i] more than actually [i]designed[/i]. The role of the stylists appears to have been to decorate the shape given them by the engineers, in which they had little if any say.

  4. Very nice article, Mr. Severson! I’m the president of the Airflow Club of America and I happened to find this site while searching for some other material. It’s nice to see a recent article about the Airflow. We are a small (425+) member club. We just had our National Meet in Durango, Colorado and I drove my 1935 C2 (Imperial) from Seattle WA. There are not many 76 year old cars which cruise smoothly down the road at 75 mph in overdrive. I did the return trip (1,300 miles) in two days. I own a 35 Packard, a 37 Cord and numerous other cars of the era and none can match the “modern” ride and drive of an Airflow.

    You are right, Engineering called the shots when the Airflow was designed. It was truly radical. Besides being quiet and smooth at 75 mph, it has gobs of art deco everywhere.

    The 6 cylinder cars (all DeSotos) are true to the Airflow spirit, but after riding in a prototype, Chrysler wanted an Airflow with his name on it. The Imperial Coupes are very well proportioned with six extra inches behind the B pillar.

    I am not opposed to rods, but if a CW was rodded it would break my heart so don’t verify it, please!

    In 1934, Chrysler did offer a retrofit grill which replaced the pure “waterfall” look with a more traditional grill – as was found on the ’35 models. With each passing year, as sales never materialized, Chrysler tried to make the front end look more conventional.

    Visit the website at airflowclub.com. Check out the video of the Airflow being pushed off a cliff and driving away (in the Library section). If anyone would like to see an Airflow close up, let me know and I’ll link you up with the closest members. fwd9@hotmail.com

    Thanks again for a nice article!

    1. Frank,

      Thanks for the kind words!

      I’ve seen the story that the Airflow was originally intended [i]only[/i] as a six-cylinder DeSoto in a number of secondary sources. Do you have an original source for that account? As it stands, I’m afraid I’m rather skeptical of it.

      It’s true that the 1932 Trifon Special prototype was a DeSoto-size, six-cylinder car, and Carl Breer does say that he and Oliver Clark started with a six-cylinder model in laying out the packaging for the Airflow; they wanted to determine the minimum dimensions necessary to achieve both the aerodynamic profile and minimum passenger space they were looking for. However, Breer makes no mention of intending to [i]only[/i] offer the Airflow as a six, and his account indicated that the decision about which brands would offer it was made later. All he says on that subject is that they decided it would be sold by Chrysler and DeSoto; he says nothing about any plan to market it as a DeSoto-only product.

      Breer does say that Walter P. Chrysler was very excited about introducing the Airflow to celebrate Chrysler’s 10th anniversary. Based on Breer’s description of WPC’s enthusiasm for the project, it’s hard to conceive Chrysler [i]not[/i] wanting an Airflow with his name on it — if somebody suggested otherwise, I’m not sure who or why. From a business standpoint, certainly, offering the Airflow only as a DeSoto six wouldn’t have made much sense. The development costs were undoubtedly high, and DeSoto’s annual volume was not; it hadn’t topped 40,000 units since before the Crash. Also, even if there were some original plan to only offer it as a six, why didn’t the U.S. Chrysler line get the CY?

      Now, given the antipathy some of the corporation’s management apparently had toward the Airflow project, it’s entirely possible that getting the individual presidents to accept it was quite a battle. I suppose it’s possible that DeSoto president Byron Foy was less opposed than his colleagues; I really don’t know. However, my suspicion is that if there was a debate over who would offer the Airflow, it was more a matter of internal resistance than any overarching plan of what the Airflow should be.

      It would certainly be fair to call the six the baseline Airflow, since the larger eight-cylinder cars were created by splicing additional sections into the body panels and frame, but I don’t know that that means the bigger cars were somehow an afterthought. From Breer’s account, I think it was just easier to start with the smaller version, to establish the minimum package dimensions. That makes sense — if you know you have acceptable passenger room on the shorter wheelbase, it’s easy to make it bigger, whereas if you base your engineering on the larger version, it’s harder to scale it down without compromising utility space.

      If someone can point me toward a primary source for the DeSoto-only story — first-person accounts of the meeting where it was decided, etc. — I’ll happily accept that, but otherwise, I’m inclined to think that story may just be a misinterpretation of Carl Breer’s account, one that has, as they say, grown in the telling.

      I wholly agree on the CW. I’m not keen on the idea of heavily customizing the Airflow to begin with — it’s relatively rare, of obvious historical interest, and already pretty wild looking without any help — and the idea of cutting up a CW is the sort of thing that gives historians night terrors!

  5. Aaron,
    In the text on page one, it states that the Rumpler Tropfenwagen was powered by a 2.5 W6. Is this a misprint of V6? Or was this a prelude to to todays W8 Volkswagen?

    1. Nope, that’s not a typo. The early Tropfenwagen had a 2,580 cc Siemens & Halske engine with three banks of two cylinders. I don’t think I’ve ever seen a picture of it, but I imagine it was rather bulky.

  6. another expertly written and beautifully illustrated article on these avant garde art deco cars that were way ahead of their time in terms of both styling and engineering-please do an article on the history of De Soto

  7. I own a 1935 Chrysler Airstream c-6 Coupe.
    I’ve been able to determine thru internet research that there were 1975 like models made. What I can’t find is how many of them were standards and how many were deluxe. Does anyone know or know how I can find this info.

    Tx

    1. Dennis,

      The information I have indicates that the six-cylinder Airstream C-6 models weren’t grouped into standard and deluxe versions, only the CZ Airstream Eight. Your number is what I show for business coupe production, as well.

      1. Thank you for the reply that’s interesting to hear, but I’m still confused. I’ve seen, what I believe are photo’s of some C-6′s with parking lights on top of the front fenders & horns mounted thru the stainless grill work on the fenders below the headlites on ea. side of the grill..in addition these cars have 2 windshield wipers. In addition to that I’ve seen photos of C-6′s with no parking lites on the fenders – grill work on the lower fenders
        with no horns & also a single wiper. I’m confused about the differences, could it be as simple as diff. options? What are your thoughts.
        Tx
        Dennis

        1. The Deluxe models were introduced after the start of the 1935 model year. At least on CZs, the dual horns were initially standard and then were deleted on non-Deluxe Eights when the Deluxe was introduced; the horn layout you describe sound like the early and late non-Deluxe CZ arrangements. Chrysler’s factory production figures don’t distinguish between Deluxe and non-Deluxe CZs, probably because of the midyear change. Now, I don’t know anything about a Deluxe version of the six-cylinder cars — all of that applies to the Eights.

          Is it possible that some of the confusing pictures you’ve seen were actually mislabeled CZs? A quick image search just now revealed at least once set of photos labeled as C-6s that are pretty clearly late CZ Deluxes (they even have the winged "8" badges on the catwalks) and there was definitely that variation with the eight-cylinder cars. I could see the parking lamps being a dealer or owner add-on, but the horns do seem like a production variation.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

PLEASE DON'T POST COPYRIGHTED CONTENT YOU DON'T OWN! Click here to read our comment policy.
Except as otherwise noted, all text and images are copyright © Aaron Severson dba Ate Up With Motor